HITRAN2004 论文 [1] 中曾描述过 HITRAN 数据库逐行部分提供的能级或状态的量子数标识。从那时起,许多新分子被添加到 HITRAN 数据库中,并且对某些分子和同位素的格式进行了调整以包含更多信息。下表将概述作为 HITRAN2020 传统(默认)“.par”输出格式(请参阅 www.hitran.org/lbl/ )的一部分提供的量子数格式(截至 HITRAN2020 [2])。应当注意,“.par”是固定长度的 ASCII 格式;因此,一些分子需要单独的解决方案才能在有限的空间内拟合所有可用的量子信息。数据库的关系结构还支持XSAMS格式(解释见http://www.vamdc.org/documents/cbc-1.0/),可以通过创建自定义输出格式进行检索,并能够存储更详细的量子信息。
摘要中红外的光学频率梳是一种强大的气体传感工具。在这项研究中,我们证明了一个简单的中红外双弯曲光谱仪,在Linbo 3波导中覆盖3–4 µm。基于低功率激光器系统,通过linbo 3波导中的脉冲差差频率产生来实现中红外梳子。我们在超脑生成之前构建疗法前的管理,以控制泵和信号脉冲的时空比对。对于3-4 µm idler的产生,超副局部直接耦合到the的定期螺旋的Linbo 3波导中。基于这种方法的中红外双弯曲光谱仪在25 THz覆盖范围内提供了100 MHz的分辨率。为了评估光谱法的适用性,我们使用双梳光谱仪测量甲烷光谱。测量结果与Hitran数据库一致,其中残留的根平方为3.2%。这种提出的方法有望在芯片上开发综合且坚固的中红外双弯曲光谱仪进行感测。
正确的压力扩大对于对大气中的辐射转移进行建模至关重要,但是对于超球星大气中预期的许多外来分子缺乏数据。在这里,我们探索了现代的机器学习方法,以产生大量宽压力的参数,用于在Exomol数据库中大量分子。为此,最新的机器学习模型用于适合Hitran数据库中现有的经验空气数据。开发了一种用于大规模产生压力扩展参数的计算廉价方法,对于看不见的活性分子而言,这证明是合理的(69%)。此方法已用于增强以前不足的Exomol系列拓宽饮食,为所有Exomol分子提供空气数据,以便Exomol数据库对线扩展具有完整,更准确的处理。提出建议,以改善大气数据库中存在的物种的空气开发参数。