首先,回想一下参考文献。[ 24 ] 其中 Hughston、Josza 和 Wootters 给出了给定密度矩阵背后所有可能集合的构造性特征,假设集合具有有限数量的元素。其次,Wiseman 和 Vaccaro 在参考文献中。[ 25 ] 然后通过物理可实现集合的动态激励标准论证了首选集合。第三,Goldstein、Lebowitz、Tumulka 和 Zanghi 挑选出高斯调整投影 (GAP) 测度作为热力学和统计力学环境中密度矩阵背后的首选集合 [ 26 ]。第四,Brody 和 Hughston 在几何量子力学中使用了最大熵的一种形式 [27]。HJW 定理。在技术层面上,对于我们的目的而言,最重要的结果之一是 Hughston-Josza-Wootters (HJW) 定理,该定理已在文献 [ 24 ] 中证明,现在我们对其进行总结。考虑一个有限维希尔伯特空间 H S 的系统,该系统由秩为 r 的密度矩阵 ρ 描述:ρ = P r j =1 λ j | λ j ⟩⟨ λ j | 。我们假设 dim H S := d S = r ,因为 d S > r 的情况很容易通过将 H S 限制在由 ρ 的图像定义的 r 维子空间中来处理。然后,可以通过与具有 d S 个正交向量作为列的 d × d S 矩阵 M 进行线性混合,从 L ( ρ ) 生成具有 d ≥ d S 个元素的通用集合 e ρ ∈E ( ρ )。然后,e ρ = { p k , | ψ k ⟩} 由以下公式给出:
在使用 GPS/IMU 进行直接地理参考测绘模式或甚至使用空中三角测量测绘时,相机/IMU 视轴校准是测绘过程中的关键要素。一些研究人员证明了需要最佳的视轴校准过程、程序和软件工具。因此,本文重点介绍使用 Applanix Corporation 新发布的 POSCal TM 软件在视轴校准领域的最新发展。首先,简要讨论以描述性方式总结软件功能。然后,简要介绍了软件中实现的多种分析工具,这些工具是进行 GPS、IMU、图像、地面控制和基准问题的质量保证和质量控制所必需的。已经进行了一项分析研究来测试该软件的分析工具。这项研究使用了加利福尼亚州奥克兰的 HJW GeoSpatial Inc 和欧洲实验摄影测量研究组织 (OEEPE) 的试点中心(汉诺威大学)收集的真实数据集。所有数据集均由配备 6 英寸镜头锥体的 9 英寸 x 9 英寸胶片相机和 Applanix POS/AV TM 510 系统采集。此外,所有数据集都具有良好的地面控制点数量、分布和准确性、高质量的图像测量值以及良好的 GPS 和 IMU 数据。这使得我们可以从高质量的数据集开始,其中故意引入偏差和噪声进行分析 p
国家和团体。量子力学公理、量子比特、自旋-1/2、光子极化、密度算子、二分量子系统、布洛赫球、施密特分解、纠缠、集合解释的模糊性、凸性、集合的准备、比光还快?量子擦除、HJW 定理、两个量子态相距多远?、保真度和乌尔曼定理、距离测量之间的关系。措施和演变。正交测度及其他、正交测度、广义测度、量子通道、求和算子表示、可逆性、海森堡框架中的量子通道、量子运算、线性、完全正性、通道状态对偶和通道扩张、通道状态对偶、Stinespring 扩张、重新审视公理、三个量子通道、去极化通道、相移通道、振幅衰减通道、开放量子系统的主方程、马尔可夫演化、刘维尔、阻尼谐振子、非马尔可夫噪声、高斯相位噪声、自旋回波、量子比特作为噪声谱仪、非零温度下的自旋玻色子模型。量子纠缠。 EPR 对的不可分离性、隐藏量子信息、爱因斯坦局部性和隐藏变量、贝尔不等式、三个量子硬币、量子纠缠与。爱因斯坦局域性、其他贝尔不等式、CHSH 不等式、最大违反、量子策略优于经典策略、所有纯纠缠态都违反贝尔不等式、光子、实验和漏洞、使用纠缠、密集编码、量子隐形传态、量子隐形传态和最大纠缠、量子软件、量子密码学、EPR 量子密钥分发、无克隆、混合态纠缠、可分离性的部分正转置准则、无纠缠的非局域性、多方纠缠、量子三盒、猫态、纠缠增强通信、操纵纠缠。