• 三管齐下的方法在巴西取得了最大的成功,但是……“由于气候变化和黄龙病,柑橘生产大国巴西的橙汁产量预计将达到三十多年来的最低水平……”(《每日邮报》,2024 年 5 月 14 日)
此外,通过施用微量元素[硼 (B)、铁 (Fe)、钼 (Mo)、镍 (Ni) 和锌 (Zn)] 可能诱导抗氧化酶的活性,以减少 ROS 的损害。微量元素对植物生长至关重要。此外,适当浓度的硼、铜、铁、锰 (Mn)、钼、镍、硒或锌可激活内源性抗氧化酶和非氧化代谢,从而减轻 ROS 的损害 (Tavanti 等人,2021 年)。与阴性对照相比,土壤施用锰和锌,或镁 (Mg) 和硼,以及叶面喷施锰、锌、Mg 和钼可显著缓解 HLB 症状 (Shen 等人,2013 年;Atta 等人,2021 年;Zhou 等人,2021 年)。然而,一旦 HLB 对树木造成严重损害,对 HLB 管理的积极作用似乎就会受到限制(Gottwald 等人,2012 年)。
柑橘生产面临着许多环境挑战,包括毁灭性的黄龙病 (HLB)。HLB 也称为柑橘黄龙病,会影响柑橘植物的健康、生长和果实品质 ( Wang, 2019 )。柑橘作物作为嫁接树在选定的砧木品种上栽培已有悠久历史,这可以改善树木的性能并在一定程度上抵抗 HLB ( Shokrollah 等人,2011 年;Bowman 和 Albrecht,2020 年;Bowman 等人,2021 年)。最近,几种转基因方法在对抗 HLB 方面取得了重大进展。然而,公众对转基因 (GM) 作物的接受度非常低,许多消费者更喜欢吃非转基因食品 ( Lucht, 2015 )。在本文中,我们探讨了通过将非转基因接穗嫁接到转基因和非转基因砧木上来对抗 HLB 的不同方法的潜力。
分散系统 - 乳液亲水性亲脂性平衡(HLB)系统:通常,每种乳化剂具有亲水性部分和亲脂性部分,其中一个或多或少具有或多或少的主要和影响,并且以已经描述了乳液类型的方式。已经设计了一种方法,即可以根据其化学成分将乳液或表面活性剂归类于其亲水性 - 亲脂性平衡或HLB。通过此方法,为每个代理分配一个HLB值或指示物质极性的数字(数字已分配到大约40个)。通常的范围在1到20之间。每种表面活性剂具有一个HLB数,代表了高度极性或亲水性的分子材料的亲脂性和亲水性部分的相对比例,而比极性较小,高嗜嗜性的材料的数量更高。HLB值为3至6的材料是高度亲脂性的,有利于Waterin-Oil(W/O)乳液。- 大约8至18的HLB值对应于有利于水中油(O/W)乳液的乳化剂。
• 在被认为可根除的地区开展 ACP 根除计划。 • 在被认为可抑制的地区开展 ACP 抑制计划,使用杀虫剂。 • 使用生物防治剂减缓 ACP 从重度感染地区的扩张的 ACP 种群减少计划。 • HLB 根除计划。 • ACP 和 HLB 的早期检测计划。 • ACP 和 HLB 监管计划。 • 与 ACP/HLB 特设科学顾问小组 (SAP)、加州大学 (UC)、州和联邦机构、柑橘行业成员和监管官员的科学家持续对话,以确保计划设计和要素考虑最佳可用科学并促进和保护柑橘行业。 • 种植者教育、推广和协调计划;以及 • 公众教育和推广计划。
18 世纪末,柑橘枯萎病开始在印度蔓延(Gottwald 等人,2007 年)。大约在同一时间,中国南方的农民也遭遇了类似的疾病,他们称之为黄龙病 (HLB)(da Gra¸ca 和 Korsten,2004 年)。HLB 的病原体 Candidatus Liberibacter asiaticus (C Las) 细菌会感染树木的韧皮部,使根部窒息,导致树木死亡。一旦 HLB 感染树木,它会迅速蔓延到整棵树(Farnsworth 等人,2014 年)。即使树木在最初的感染中幸存下来,其大部分果实也不会完全成熟,因此有些人将 HLB 称为柑橘黄龙病。被感染的树木的果实变得无法食用,而且治疗当地特有果园的成本很高,因为可能需要喷洒杀灭亚洲柑橘叶蝉 (ACP) 的药物,这是 C Las 的主要媒介,并且可能需要移除被感染的树木及其附近的树木。自从在亚洲发现以来,HLB 已经传播到亚洲、非洲和美洲的 40 多个国家(Bov´e,2006 年)。1998 年,佛罗里达州的一片果园感染了 ACP,七年内,HLB 在佛罗里达州南部被发现。HLB 蔓延到佛罗里达州,导致 2007 年至 2011 年间佛罗里达州经济损失约 45 亿美元(Alvarez 等人,2016 年;Farnsworth 等人,2014 年;Hodges 和 Spreen,2012 年),并在 2004 年至 2020 年间每年减产约 800 万吨(Simnett 和 Kramer,2020 年)。为了说明这些损失的严重程度,我们注意到佛罗里达州 2022 年柑橘价值和产量分别约为 5.85 亿美元和 203 万吨(USDA-NASS 2022)。2008 年,ACP 在加利福尼亚州圣地亚哥县的住宅树木中被发现,现在已在整个南加州的住宅和商业柑橘园中建立(Byrne 等人 2018;Hoddle 2012)。迄今为止,已在加利福尼亚州 6,190 棵住宅树木中检测到 HLB。1
callose是一种1,3- B葡聚糖,负责植物学中的几个过程,例如细胞分裂,成熟花粉母细胞,维持质量肿瘤的开口,并为筛子提供结构。除了生理角色外,在病原体攻击期间还沉积了callose,形成乳头状以防止病原体进入组织或堵塞筛子以限制韧皮部病原体的扩散。念珠菌亚洲(c las)是huanglongbing(HLB)的因果因素(HLB),是一种韧皮部限制性病原体,其感染导致在韧皮部中产生Callose。表征HLB期间callo的动力学的动力学对于理解疾病很重要,但是没有公开的方案可用于提取和定量在柑橘树中的提取和定量,并且定量数据受到限制。通过显微镜检测Callose是耗时且昂贵的,并且没有提供有关在整个工厂中分布的信息。在这里,我们提出了一个简短的方案,用于从柑橘植物中对总callose的有效提取和定量。我们比较了来自健康和c感染的植物的不同组织,并确定了中桥,茎和受感染植物的水果花梗中的callo糖水平的增加。与茎,根和水果花梗相比,叶子中的callose水平最高,尤其是中径。该方法可以应用于其他木本植物物种。
在2023年9月5日至2023年9月28日之间,加利福尼亚州食品和农业部(CDFA)证实了柑橘疾病的柑橘病(HLB)在柑橘树组织和昆虫vector vector Asian citrus psyllid(ACP)的柑橘疾病(HLB)存在的存在。在奥兰治县的阿纳海姆,亨廷顿海滩,欧文,橙,圣安娜和威斯敏斯特的城市和社区收集了柑橘树组织和昆虫载体。HLB是柑橘的毁灭性疾病,通过ACP种群的喂养行动传播。HLB/ACP对加利福尼亚州商业柑橘的生产,住宅柑橘种植,自然资源和经济构成了重大,清晰且迫在眉睫的威胁。除非采取紧急行动破坏ACP生命周期,否则在奥兰治县,未来突然发现的可能性很高。
随着KPS第一大股东变更为Doomm株式会社,该公司除了原有的OLED掩膜张力器业务外,正处于向生物公司转型的过程中。第一大股东变更后,增加了生物事业目的,并任命HLB及HLB Life Sciences前首席执行官Kim Ha-yong、HLB及LSK Biopartners创始人Kim Seong-cheol为首席执行官。目前正在开发的OLED混合掩模版有望确保高压市场的中长期竞争力,而对生物业务的期待也有望成为提高估值的因素。
摘要 影响全球柑橘产业的最具破坏性的疾病是黄龙病 (HLB),其病原体是 Candidatus Liberibacter asiaticus。HLB 主要通过昆虫媒介柑橘木虱 (Diaphorina citri) 传播。为了阻止柑橘木虱引起的 HLB 的快速传播,人们采用了传统的媒介控制策略,例如喷洒杀虫剂、释放天敌和大量引入天然寄生蜂。然而,仅靠这些方法无法遏制疾病的传播。为了通过对柑橘木虱基因组进行特定改造来进一步扩展可用于控制柑橘木虱的工具,我们开发了基于 CRISPR-Cas9 的基因改造协议。到目前为止,由于柑橘木虱卵通常很脆弱且体积很大,因此对柑橘木虱进行基因组编辑一直是一项挑战。本文介绍了收集和准备卵子以将 Cas9 核糖核蛋白 (RNP) 引入早期胚胎的优化方法,以及将 RNP 注射到成年雌性血腔中进行卵巢转导的替代方法。利用这些方法,我们产生了可见的体细胞突变,表明它们适合在 D. citri 中进行基因编辑。这些方法代表了推进 D. citri 研究的第一步,为未来基于基因的控制 HLB 的系统做准备。