图1。(a)扩展现实(XR)平台元素。Xr(即虚拟现实[VR],增强现实[AR]和混合现实[MR])是一种新兴的成像范式,其特征是用户的沉浸,交互和存在的不同级别。浸入是指扩展现实环境中物理存在的感觉,在扩展现实环境中,用户与现实世界隔离开来。互动被描述为在数字环境中采取行动和接收反馈的能力。存在吸引了人们对人工环境的联系的感知,引起了其中存在的幻想(1、2)。(b)XR技术平台。在VR中,用户完全沉浸在非自然数字世界中,这是由头部安装显示(HMD)促进的,该显示器提供了感官输入(即图像,声音)(3)。在AR中,用户部分沉浸在人工环境中,但可以与现实世界以及数字世界中的元素互动。与VR不同,AR用户总是可以实时体验他或她自己的现实(4)。MR姿势是VR的子类,将真实和虚拟环境结合在“虚拟连续性”中,无缝地将现实世界和人工数字场景与较高的连接性和较高的计算机用户相互作用级别相结合(3,5)。
传感器和通信技术的进步使航空飞行更加容易和安全,但代价是飞机会产生大量信息。尽管大量信息用于地面离线处理或机载任务计算机自动处理,如控制自动驾驶系统,但飞行员需要手动感知和处理大量信息,以便为飞行和任务控制任务做出决策(Hierl、Neujahr 和 Sandl,2012 年)。军用快速喷气式飞机(用于空中优势或多用途任务的战斗机)的信息处理比客机更困难,因为飞行员除了主要飞行任务外还需要执行次要任务。次要任务控制任务可能包括侦察、保护或跟踪空中资产以及武器投送,所有这些都需要仔细感知和分析飞机外部的信息以及驾驶舱内显示的信息。在有限的驾驶舱空间内有效显示信息是一项具有挑战性的设计任务。现有军用飞机使用三种类型的视觉显示器:下视显示器 (HDD)、抬头显示器 (HUD) 和头戴式显示器 (HMD)。HDD 配置为将信息显示为多功能显示器 (MFD)。MFD 用于以可配置的方式显示从主要飞行数据到空中物体细节等信息。每个都是矩形的,由一组
本文研究了输入/输出设备特征和沉浸度对特定扩展现实(XR)效应的用户体验(UX)的影响,即存在,自我感知,其他感知和任务感知。它针对进入社交XR的通用访问,在该社交XR中,专用XR硬件无法使用或无法使用,但参与是可取的甚至是必要的。我们将三种不同的设备配置比较:(i)桌面屏幕与鼠标,(ii)带有跟踪控制器的桌面屏幕,以及(iii)带有跟踪控制器的头部安装显示器(HMD)。87个参与者参与了特定开发的社交XR中与不对称设备配置的协作二元相互作用(分类任务)。与先前的研究一致,桌面设置的存在感和界面的感觉明显降低。但是,我们仅发现任务负荷上的差异很小,并且条件之间任务的可用性和享受没有差异。另外,无论使用什么设备,对他人的人性和虚拟人类的合理性都不会受到影响。最后,对自己或其他人的沉浸水平的共同存在和社会存在没有影响。我们得出的结论是,社交XR中的设备对于自我感知和存在很重要。但是,我们的结果表明,这些设备不符合重要的UX和可用性方面,特别是在协作场景中社交互动的素质,为通用社交XR相遇的普遍访问铺平了道路,并显着促进了参与。
本研究重点通过考虑物理环境和虚拟环境之间的重力定律差异,探索物理空间和虚拟空间之间的过渡阶段。阈值空间设计的概念是一系列过渡阶段,可用于增强虚拟现实 (VR) 体验。与大多数主要关注头戴式显示器 (HMD) 的 VR 研究不同,本研究研究了用户在物理空间和虚拟空间之间的感知。阈值空间设计方法允许用户提前体验即将到来的阶段。它不仅仅是一个简单的中间空间,它解决了 VR 中可能由于两种现象而发生的混乱和迷失方向:大脑识别和视觉感知之间的冲突;视觉-前庭不匹配。阈值空间特别适用于过渡阶段,通过让用户适应直接影响身体感觉的重力变化来改善 VR 体验。通过分析现有的 VR 过渡模型,框架模型被设计为利用阈值空间将两个过渡合二为一,让用户能够平稳过渡。在已建立的框架模型基础上,设计了以水为连接介质的临界空间过渡模型,以提供物理空间与虚拟空间之间重力变化的体验。本设计共包含五个阶段,运用阈值空间阶段模型,以促进用户实现流畅、沉浸的过渡。
摘要 - 认知理论在设计人类计算机界面和沉浸式系统时会为我们的决策提供信息,使我们能够研究这些理论。这项工作通过使用经典可视化问题研究内部和外部用户行为来探讨沉浸式环境中的感官过程:视觉比较和聚类任务。我们开发了一个沉浸式系统来执行用户研究,从不同的渠道收集用户行为数据:用于捕获外部用户互动的AR HMD,功能性近红外光谱(FNIRS)用于捕获内部神经序列以及用于参考的视频。为了检查感官,我们评估了界面的布局(平面2D与圆柱3D布局)以及任务的挑战水平(低认知负荷)的挑战水平如何影响用户的交互,这些交互作用如何随时间变化以及如何影响任务绩效。我们还开发了一个可视化系统,以探索所有数据通道之间的关节模式。我们发现,增加的相互作用和脑血液动力学反应与更准确的性能有关,尤其是在认知要求的试验上。布局类型没有可靠地影响交互作用或任务性能。我们讨论了这些发现如何为沉浸式系统的设计和评估提供信息,预测用户绩效和互动,并从体现和分布式认知的角度提供有关感官的理论见解。
摘要 - 在本文中,我们表明虚拟现实(VR)疾病与注意力的降低有关,这是通过在双任务范式中收集的脑电图(EEG)测量的P3B事件相关电位(EEG)的测量结果检测到的。我们假设疾病症状(例如恶心,眼睛疲劳和疲劳)将降低用户注意在虚拟环境中完成的任务的能力,并且在经历了P3B份量的降低中,在体验VR疾病的同时,将动态地反映出注意力的降低。在用户研究中,参与者沿着VR的博物馆进行了游览,沿着VR的一条旋转数量不同,以前证明会导致不同水平的VR病。在关注虚拟博物馆(主要任务)时,要求参与者默默地计算不同频率的音调(次要任务)。在用户没有戴头部安装显示器(HMD)时,进行了与VR病疾病情况进行比较的控制测量值,而当他们沉浸在VR中,但没有在环境中移动。这项探索性研究表明,在多次分析中,在任务过程中收集的P3B的效果平均幅度与任务后用问卷(SSQ)测得的疾病严重程度以及次级任务的计数错误数量有关。因此,VR病可能会损害注意力和任务表现,并且可以通过ERP措施进行这些注意力的变化,而无需要求参与者评估他们的疾病症状。
[Hul97a] 将情境感知定义为能够根据用户所处环境感知、解释和响应的计算机系统。 增强认知 要开发信息显示系统,必须研究信息需求,还必须确定呈现信息的最佳方式,以使系统稳健、可用和有效。人类的信息处理能力已迅速成为人机交互的限制因素。这个问题促使了一门名为增强认知(AC)[Kob06a]的新科学学科的发展。AC 的具体关注点是设计方法来检测和减轻人类信息处理的局限性,以及设计解决方案来改善人机系统上的信息交换和使用。 增强现实 根据 [Hic03a],AR 为用户提供可以在现实世界中看到的叠加信息,即它用虚拟信息补充现实世界。AR 通过向视觉、声音、嗅觉或触觉等感官添加信息来改善对自然世界的感知。 AR 是指将来自三维现实环境的信号与用户感知相结合。具体来说,它表示使用眼镜或 HMD(头戴式显示器)将虚拟 3-D 图像与用户对周围世界的自然视觉融合。通过呈现集成在用户环境中的叠加信息,AR 有可能在许多应用领域提供显著的优势。这些优势中的许多都来自于这样一个事实:通过 AR 系统显示的虚拟信号可能超出了物理可见的范围。网络中心战根据 [Dod05a],网络中心战是一种军事理论,旨在通过地理上分散但联系紧密、信息灵通的强大部队网络将信息优势转化为竞争优势。
方法在伊拉斯mus大学医学中心进行了实验设置,至少与介入的心脏运动员和心胸外科医生举行了心脏小组会议。邀请五名心胸外科医生(一名在训练中),并邀请五名心脏病学家参加这项研究。在VR-CRET-INS之前,所有参与者均已简要使用(5分钟),介绍如何使用硬件和软件。基于身临其境的VR远程多学科冠状动脉血运重建心脏团队会议是根据当地原则模拟的,并遵守当地聚会限制规则(图1)。每个VR会议都由心脏病学和心胸外科部门的至少两名参与者组成。总共组织了10次会议,包括至少一名研究参与者(心脏病学家/心脏外科医生)和一名常驻心脏病学/心胸外科手术物理学。Participants remotely joined a virtual room in a VR-based meeting platform (MeetinVR, Copenhagen, Denmark) by using VR-1 (Varjo, Helsinki, Finland) and Rift S (Oculus, Irvine, California, USA) HMD's, VR-controllers, and high-performance Thinkstation (Lenovo, Quarry Bay, Hong Kong) computers.经验丰富的VR用户在会议期间提供技术支持。在VR-ceetings期间,一名协调员(常驻医师)为一名患有确认的三局长冠状动脉疾病的患者提供了匿名参与者的匿名医学图像(冠状动脉造影,超声心动图,ECH和胸部X射线),该患者已经在早些时候对Hort in Hort hort hort hort in Hort in Hort hort hort in Hort hort hort hort hort hort in Hort in Horts进行了讨论。
数字设备用于学习和教育目的的运用越来越广泛。这在 1997 年至 2006 年期间尤为明显,当时联网计算机被广泛用于共享学习,而在 2007 年至 2016 年期间,所谓的在线数字学习变得普遍。在这两个时期,人们质疑利用虚拟学习环境和移动设备等新技术的潜力。尽管传统教育强调教师而不是学生,但这种方法已经显示出一些重大缺陷,并且与今天的标准不符 [1]。正如 Colin 和 O'Brien 所说 [2],学生被要求进行自己的同行评审,自己进行实验,并尝试将他们的发现与已知知识联系起来,而不是被动地接受老师提供的东西。技术在这一趋势中发挥了重要作用,尤其是游戏化 [3-6]、增强现实 (AR) 和虚拟现实 (VR) 娱乐和教育移动设备 [7、8]。最近,VR 技术已积极应用于各个实施领域的教育、教学和培训 [9]。尽管 VR 并不是什么新鲜事物,但过去十年中沉浸式技术在可视化和交互方面的发展使 VR 对科学家更具吸引力。最新的 VR 屏幕,如 HTC Vive 或 Oculus Rift,可让用户体验高度的沉浸感。“沉浸感”一词描述了用户参与虚拟环境的感觉,在此期间,他们对实时时间的感知常常变得不连贯。预计到 2022 年,头戴式显示器 (HMD) 市场规模将达到 250 亿美元,在 2019 年至 2025 年期间的年增长率为 39.52%。因此,现在是探索沉浸式 VR 的最佳时机,主要是因为 VR 技术的功能不断增强,而且价格越来越实惠 [9]。欧盟有 3300 所高等教育机构。与美国体系相比,欧洲体系要复杂得多,因为它主要在国家和地区层面组织,每个层面都有自己的法律要求、文化和历史框架以及不同的语言[10]。为了实现统一的
在自闭症谱系障碍领域(ASD)中,与尖端技术(尤其是虚拟现实(VR))的动态交集已成为教育和治疗性干预措施的开创性途径。ASD以社会交流和重复行为的困难为特征,在导航日常社交互动方面提出了独特的挑战(美国精神病学协会,DSM-5 TOMPLECT,2013年)。最近,技术创新(尤其是虚拟现实)的利用情况显着提高,以解决自闭症谱系障碍患者的各种要求(Burdea和Coi效率,2017年; Glaser和Schmidt,20222)。自闭症和技术共生的新兴领域有望以量身定制和令人鼓舞的方式改善社会,认知和语言能力。vr是在现代时期快速扩张的关键参与者,在那里信息和通信技术系统(ICT)正在策划整个部门的破坏性变化(乌卷,2020年)。其根源在计算机图形上,虚拟现实(VR)为虚拟环境中的用户提供丰富的感官体验。沉浸式VR(IVR)系统,例如头部安装的显示(HMD),对VR的出现做出了重要贡献,尤其是在医疗保健领域。学术界逐渐探索了IVR在医疗保健中的使用,目的是提高学习率并解决与ASD这样的与神经发育障碍有关的特定问题。IVR的优势与ASD的人的特征很好,例如他们对技术的天生热爱,出色的视觉回忆和对视觉空间信息的敏感性提高(Glaser and Schmidt,2022; Schmidt et el。,Schmidt等,2021b)。通过减少社交焦虑并促进现实,适应性的虚拟世界中的教学,这项技术促进了受监管且可重复的学习环境(Zhang等,2022; Karami等,2021; Parsons,2016)。文献强调了针对IVR作为ASD患者的关注IVR的研究激增,强调了其对解决该疾病核心症状的深远影响(Bozgeyikli等,2018; Miller and Bugnariu,2016; Lorenzo et al。,2019年)。然而,IVR的效果取决于其与精心设计的学习策略的整合,强调需要采取整体方法来利用这种变革技术对自闭症谱系中的个人的潜力。
