细菌CRISPR-CAS系统采用RNA引导的核酸酶破坏噬菌体(病毒)DNA。噬菌体反过来又进化了多样化的“抗Crispr”蛋白(ACR)以抵消获得的免疫力。在单核细胞增生李斯特菌中,预言编码2-3个不同的抗Cas9蛋白,始终存在Acriia1。但是,Acriia1s普遍存在及其机制的重要性尚不清楚。在这里,我们报告了AcriiA1通过催化HNH结构域与Cas9高亲和力结合。在李斯特菌的裂解过程中,Acriia1触发Cas9降解,但在裂解感染期间,由于其多步灭活机制,Acriia1无法阻止Cas9。因此,噬菌体需要额外的ACR,以迅速结合并灭活Cas9。acriia1还唯一地抑制了在李斯特菌(类似于saucas9)和II-C型Cas9中发现的高度差异Cas9,这可能是由于Cas9 HNH域的保护。总而言之,李斯特菌噬菌体在裂解生长中灭活cas9
我已阅读疫苗信息表上有关疫苗和特殊预防措施的信息。我知道我可以在 www.immunize.org 或 www.cdc.gov 上找到最新的疫苗信息声明和其他信息。我有机会询问有关疫苗的问题并了解风险和好处。我请求并自愿同意将疫苗接种给上述人员,我是他们的父母或法定监护人,并有法定权力代表他们做出医疗决定。我承认没有关于疫苗成功的保证。我特此免除学校系统、HNH Immunizations Inc.、MaxVax LLC.、Health Heroes 及其附属公司、子公司、附属护理学校、其董事和员工因接种疫苗期间发生的任何事故或疏忽行为而产生的任何和所有责任。我了解此同意书有效期为 6 个月,并且我将在疫苗接种诊所日期之前告知学校任何健康变化。我承认我授权 HNH Immunizations Inc. 代表我向我的保险提供商裁决和上诉索赔。诊所日期可从学校获得。我了解此表格上的健康相关信息将用于保险计费目的,您的隐私将受到保护。我同意使用我的电话号码接收健康相关信息。我请求并自愿同意为上述人员接种疫苗并记录在州登记册中。
我已阅读疫苗信息表上有关疫苗和特殊预防措施的信息。我知道我可以在 www.immunize.org 或 www.cdc.gov 上找到最新的疫苗信息声明和其他信息。我有机会询问有关疫苗的问题并了解风险和好处。我请求并自愿同意将疫苗接种给上述人员,我是他们的父母或法定监护人,并有法定权力代表他们做出医疗决定。我承认没有关于疫苗成功的保证。我特此免除学校系统、HNH Immunizations Inc.、MaxVax LLC.、Health Hero of Florida 及其附属机构、子公司、附属护理学校、其董事和员工因接种疫苗期间发生的任何事故或疏忽行为而产生的任何和所有责任。我了解此同意书有效期为 6 个月,并且我将在疫苗接种诊所日期之前告知学校任何健康变化。我承认我授权 HNH Immunizations Inc. 代表我向我的保险提供商裁决和上诉索赔。诊所日期可从学校获得。我了解此表格上的健康相关信息将用于保险计费目的,您的隐私将受到保护。我同意使用我的电话号码接收健康相关信息。我请求并自愿同意为上述人员接种疫苗并记录在州登记册中。
摘要:从理论上讲,可以区分等于或超过16 bp的DNA序列的DNA序列特异性识别蛋白可能是哺乳动物基因组独有的。长期序列的核酸酶,例如天然存在的归巢核酸酶和人工设计的ZFN,TALEN和CAS9-SGRNA。与其他对应物(通过蛋白质部分识别DNA靶位点的其他对应物相比,CAS9使用单个指南RNA(SGRNA)作为DNA靶标识别的模板。由于设计和合成目标位点的SGRNA的简单性,CAS9-SGRNA已成为基因组编辑的最新工具。此外,Cas9-SgrNA的RNA引导的DNA识别活性与HNH结构域和RUVC结构域的非平均链中的核酸酶活性无关,而HNH核酸酶无核酶无效无效无效活性无效(H 840 A)和RUVC核酸酶核酸酶活性无效null null突变(识别10 A)。与SGRNA,CAS9,Cas9(D 10 A),Cas9(H 840 A)和Cas9(D 10 A,H 840 A)一起用于实现双重链断裂,互补的链断管破裂,非满足链破裂,并且分别在TARPEC上进行破裂。基于这种独特的特征,可以在靶位点内或周围引入许多工程酶活性,例如DNA甲基化,组蛋白甲基化,组蛋白乙酰化,胞苷脱氨酸,腺嘌呤脱氨基和启动引导突变。为了防止Cas9衍生物的持久表达靶向,开发了许多瞬态表达方法,包括直接递送Cas9-SgrNA核糖蛋白。生物安全问题在体内应用中是必不可少的;已经设计了包装到病毒样颗粒或细胞外囊泡中的CAS9-SGRNA,已经报道了一些体内治疗试验。
成簇的规则间隔短回文重复序列 (CRISPR)/CRISPR 相关 (Cas) 系统通过使用 CRISPR RNA (crRNA) 引导入侵核酸的沉默,为细菌和古细菌提供针对病毒和质粒的适应性免疫。我们在此表明,在这些系统的一个子集中,与反式激活 crRNA (tracrRNA) 碱基配对的成熟 crRNA 形成双 RNA 结构,该结构指导 CRISPR 相关蛋白 Cas9 在靶 DNA 中引入双链 (ds) 断裂。在与 crRNA 引导序列互补的位点,Cas9 HNH 核酸酶结构域切割互补链,而 Cas9 RuvC 样结构域切割非互补链。当双 tracrRNA:crRNA 被设计为单 RNA 嵌合体时,它还会指导序列特异性 Cas9 dsDNA 切割。我们的研究揭示了一个使用双 RNA 进行位点特异性 DNA 切割的核酸内切酶家族,并强调了利用该系统进行 RNA 可编程基因组编辑的潜力。B
成簇的规律间隔的短回文重复序列 (CRISPR) 和 CRISPR 相关 (Cas) 蛋白是细菌和古菌所特有的,构成了针对外来移动遗传元素的适应性免疫系统。1,2 CRISPR-Cas 系统分为第 1 类(使用多个 Cas 蛋白)和第 2 类系统(使用单个多结构域 Cas 蛋白),根据复杂性和特征蛋白又细分为六种类型(I 型至 VI 型)。3 作为第 2 类系统的成员,II-A 型 CRISPR-Cas9 得到了最广泛的研究和开发,成为基因组编辑和治疗工具。 4 Cas9 具有两个核酸酶位点——His – Asn – His (HNH) 和 RuvC 样结构域,可在双 CRISPR RNA (crRNA) 和反式激活 crRNA (transcrRNA) 向导介导的特定位点实现双链 DNA (dsDNA) 的精确切割。5,6
成簇的规则间隔短回文重复序列 (CRISPR)/CRISPR 相关 (Cas) 系统通过使用 CRISPR RNA (crRNA) 引导入侵核酸的沉默,为细菌和古细菌提供针对病毒和质粒的适应性免疫。我们在此表明,在这些系统的一个子集中,与反式激活 crRNA (tracrRNA) 碱基配对的成熟 crRNA 形成双 RNA 结构,该结构指导 CRISPR 相关蛋白 Cas9 在靶 DNA 中引入双链 (ds) 断裂。在与 crRNA 引导序列互补的位点,Cas9 HNH 核酸酶结构域切割互补链,而 Cas9 RuvC 样结构域切割非互补链。当双 tracrRNA:crRNA 被设计为单 RNA 嵌合体时,它还会指导序列特异性 Cas9 dsDNA 切割。我们的研究揭示了一个使用双 RNA 进行位点特异性 DNA 切割的核酸内切酶家族,并强调了利用该系统进行 RNA 可编程基因组编辑的潜力。B
CRISPR/Cas 系统是一种适应性免疫防御机制,古细菌和细菌利用该系统降解外来遗传物质。在这些生物体中,噬菌体的外来遗传物质被获取并整合到 CRISPR 基因座中 (1,2)。这种新物质也称为间隔物,可产生序列特异性片段,用于未来抵抗噬菌体感染。这些序列特异性片段被翻译成短 CRISPR RNA (crRNA),并通过 CRISPR 相关 (Cas) 蛋白的核酸酶活性引导互补入侵 DNA 的切割,该蛋白也由 CRISPR 基因座编码 (1,2)。II 型 CRISPR 系统的 Cas9 核酸酶具有 RNA 结合域、α 螺旋识别叶 (REC)、包括用于 DNA 切割的 RuvC 和 HNH 的核酸酶叶以及原间隔物相邻基序 (PAM) 相互作用位点 (1,2)。 crRNA 通过与 REC 叶内的桥螺旋结合与 Cas9 核酸酶形成复合物,并与 crRNA 的骨架形成多个盐桥 (1,2,3)。
au:preeconfirnheadinglevelsarreepressedCornectedCorcely:噬菌体编码抗蛋白蛋白(ACR)蛋白质,使CRISPR-CAS细菌免疫系统失活,允许成功入侵,复制,复制和预测整合。ACR蛋白使用多种机制抑制CRISPR-CAS系统。acriia1由许多噬菌体和质粒编码,专门与Cas9 HNH结构域结合,是第一个发现抑制spycas9的ACR。在这里,我们报告了ACRIIA1诱导的spycas9和saucas9在人类细胞培养中的降解的观察,这是人类细胞中ACR诱导的CRISPR-CAS核酸酶降解的首次检查。acriia1诱导的spycas9降解被Acriia1中的突变所消除,这些突变破坏了两种蛋白质之间的直接物理相互作用。Acriia1靶向CAS9蛋白降解可以调节人类疗法中的Cas9核酸酶活性。ACRIIA1的小尺寸和特异性可用于CRISPR-CAS蛋白水解靶向嵌合体(Protac),提供了一种用于开发安全且精确的基因编辑应用的工具。
2018 ;Chen 等人,2017 ;Kleinstiver 等人,2016 ;Lee 等人,2018 ;Slaymaker 等人,2016)。增加和减少 sgRNA-DNA 界面的长度都会显著降低五种 Cas9 变体中的四种的编辑效率,Sniper-Cas9 是个例外(Lee et al., 2018)。但这种影响的基础尚不清楚。最近,Fu 等人观察到与靶标存在大量错配的 sgRNA 能够引导 SpCas9 切口双链 DNA(Fu et al., 2019)。同样,Szczelkun 等人描述了截短的 sgRNA(互补区为 ∆ 7 nt)与嗜热链球菌 Cas9 (StCas9) 结合导致缺口分子的积累 ( Szczelkun 等人,2014 )。这些观察结果表明,截短/延长的间隔区衍生片段对核酸酶的 HNH 和 RuvC 切割域施加了不同程度的影响,使得它们在某些情况下会切开目标 DNA,而不是将其切割。在这里,我们试图检验这一假设。
