为从中长期战略性地开展先进研发,我们提出了实现未来防御能力所需的技术(研发)、技术挑战和路线图。防卫省根据《国防生产战略和一技逻辑基础》及《国防技术逻辑战略》等,制定了2010年未来战斗机研发愿景、2016年未来无人机研发愿景。根据《2079财年及以后国家安全保障会议和内阁批准的国防计划指导方针》,防卫省制定了2010年未来战斗机研发愿景和2016年未来无人机研发愿景。防卫省于2018年12月18日公布了新的研发愿景,旨在鼓励获取和加强跨领域作战所需的能力,例如“电磁频谱(EMS)技术”、“包括空间在内的持续性ISR技术”、“网络防御技术”,以及传统领域的“水下作战技术”和“防区外防御技术”,以促进多领域防御力量的实现,并实现进一步增强未来防御能力所需的技术创新。根据研发愿景,防卫省今后将战略性地培育必要技术。
摘要 - 背面照明(BSI)3D堆叠的CMOS图像传感器对于包括光检测和范围(LIDAR)在内的各种应用中引起了重大兴趣。这些设备的3D集成中的重要挑战之一涉及单个光子雪崩二极管(SPAD)晶圆的良好控制的背面稀疏,后者堆叠着CMOS WAFERS。背面晶圆稀疏通常是通过硅的回培养和掺杂敏感的湿化学蚀刻的组合来完成的。在这项研究中,我们开发了一种基于量身定制的HF:HNO 3:CH 3 COOH(HNA)化学的湿蚀刻过程,能够在P+/P硅过渡层中实现蚀刻层,具有高掺杂级别的选择性(> 90:1)。在300毫米晶片中证明了〜300 nm的极佳总厚度变化的可行性。此外,还表征了包括染色和表面粗糙度在内的HNA蚀刻硅表面的众所周知的特性。最后,提出了一种湿的化学尖端方法来减少表面粗糙度。
由于钍比铀更丰富,且其废料不易用于制造武器,因此人们一直对将其用作核燃料感兴趣。澳大利亚、比利时、巴西、加拿大、中国、丹麦、芬兰、法国、德国、印度、意大利、日本、韩国、荷兰、挪威、俄罗斯、英国、美国和其他国家都在研究钍燃料循环。然而,钍燃料循环存在一些挑战。由于钍具有惰性,辐照过的钍和用过的钍基燃料难以溶解在硝酸 (HNO 3 ) 中。232 U 的短寿命子产物会伴随高伽马辐射,而 232 U 总是与 233 U 伴生,这需要对燃料进行远程后处理和再制造。钍燃料循环中形成的镤也带来了需要解决的复杂问题。截至 2019 年底,只有印度运行了基于钍燃料循环的实验性核反应堆(René,2017 年,第 210 页)。中国已开发出钍熔盐反应堆 (TMSR) 的示范原型。
首字母缩略词定义 4W 谁做什么?地点和时间 APP 对受影响人口的责任 ARA 访问限制区 CoC 行为准则 CP AoR 儿童保护责任区 CSE 冲突敏感教育 CWD 残疾儿童 ECW 教育不能等待 EiE 紧急情况下的教育 EiE TWG 紧急情况下的教育专题工作组 EJ 东耶路撒冷 ESWG 教育部门工作组 FTS 财务追踪系统 GBV 基于性别的暴力 GMR 回归大行军 HC 人道主义协调员 HCT 人道主义国家工作队 HNO 人道主义需求概览 HPC 人道主义计划周期 HRP 人道主义应急计划 ICCG 集群间协调组 IDP 国内流离失所者 INEE 紧急情况下教育机构间网络 MHM 月经卫生管理 MoE 教育部 MHPSS 精神卫生和社会心理支持 oPt 巴勒斯坦被占领土 PSS 社会心理支持 PA 巴勒斯坦权力机构 SDG 可持续发展目标 SDR 二级数据审查 TIPH希伯伦临时国际存在 职权范围 联合国 人道协调厅 联合国人道主义事务协调办公室 联合国儿童基金会 联合国国际儿童紧急救济基金会 近东救济工程处 联合国救济工程处 水、环境卫生和个人卫生 西岸组织
摘要:为实现更薄的微电子封装,生产所需厚度的新型半导体硅片不仅需要高成本和能源,而且还会造成环境污染问题。然而,这一问题可以通过使用一步化学蚀刻来生产所需厚度的硅芯片以进行适当的封装,从而简单地解决。在本研究中,使用各向同性的湿化学蚀刻法,通过改变HF蚀刻剂浓度来研究蚀刻时间对HF/HNO 3 /CH 3 COOH混合溶液中的Si晶片的影响。研究的蚀刻时间为5分钟至30分钟,HF蚀刻剂浓度在(20-24)wt%范围内。从结果可以看出,随着蚀刻时间的延长,重量损失和蚀刻深度的变化单调增加。然后根据重量损失和蚀刻深度随时间的变化来确定蚀刻速率。结果表明,Si晶片的蚀刻速率随时间降低,在较高的HF浓度下增大。在光学显微镜下观察到蚀刻后Si晶片的表面变得光滑抛光。 X 射线衍射图表明,蚀刻硅的晶体峰强度高于纯硅,随着 HF 浓度的增加,与 Si 相关的峰略微向 2θ 方向移动。目前的发现表明,化学蚀刻硅晶片的所需厚度可以潜在地装入微电子设备制造的更薄的封装中,从而减少能源和成本浪费,实现未来的可持续发展。
样品制作工艺从对 < 100 > 表面取向的电子级金刚石衬底 (元素 6) 进行植入前表面处理开始。首先将样品衬底放入湿式 Piranha(H 2 SO 4 (95 %): H 2 O 2 (31 %) 比例为 3:1)无机溶液中,在 80 ◦ C 下清洗 20 分钟,然后通过电感耦合等离子体反应离子蚀刻 (ICP/RIE) Ar/Cl 2 等离子体化学配方进行表面约 5 µ m 蚀刻,以去除衬底表面残留的抛光诱导应变。再进行约 5 µ m ICP/RIE O 2 化学等离子蚀刻,以去除前面蚀刻步骤中残留的氯污染[1]。接下来,将样品在 Piranha 溶液中进行无机清洗(80 ◦ C 下 20 分钟),并注入 Sn 离子(剂量为 1e11 离子/cm 2,能量为 350 keV)。在通过真空退火(1200 ◦ C)激活 SnV 中心之前,进行三酸清洗(比例为 1:1:1,HClO 4(70%):HNO 3(70%):H 2 SO 4(> 99%))1.5 小时,以去除任何残留的有机污染,然后在退火步骤后进行相同的湿式无机清洗程序,以去除在金刚石基材退火步骤中形成的任何表面石墨薄膜层。为了评估 SnV 中心是否成功激活,在悬浮结构纳米制造之前对样品进行表征。波导结构的纳米加工遵循参考文献[2-6]和[1]中开发的基于晶体相关的准各向同性蚀刻底切法的工艺。图S1中显示了该方法的示意图。
摘要:单壁碳纳米管(SWCNTS)的捆绑显着破坏了它们的出色热和电性能。意识到稳定,均匀和表面活性剂 - 在溶剂和复合材料中的swcnt散发体长期以来一直被视为一个关键挑战。在这里,我们报告了含胺的芳香族和环己烷分子,这些分子是环氧固化的常见链扩展器(CES),可用于有效分散CNT。我们实现了CE溶剂中SWCNT的单管级分散,这是通过强性手性吸收和光致发光发射所证明的。SWCNT-CE分散体在环境条件下保持稳定数月。The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH − π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is con fi rmed by the negative Seebeck coe ffi cient of the CE-functionalized SWCNT fi lms, the red shift of the G band in the Raman spectra, and the NH X射线光电子光谱中的−π峰。CES的高配置显着改善了宏观CNT组件的电气和热传输。通过HNO 3的功能修改后,在80.8%的光透射率下,CE分散的SWCNT薄膜的板电阻达到161Ω平方-1。CES交联CNT和环氧分子,在CNT/环氧纳米复合材料中形成了声子传输的途径。基于CE的NH-π相互作用为SWCNT在方便而可扩展的过程中的有效和稳定分散提供了新的范式。与原始环氧树脂相比,CE -CNT-环氧复合材料的热导率增强了1850%,这是CNT/Epoxy纳米复合材料迄今据报道的最高增强。关键字:碳纳米管,分散,电荷转移,热界面材料,透明电极,功能化■简介
电线粘结仍然是微电子包装中的主要互连技术。在过去的三年中,显而易见的是,从AU和Cu线粘合到Cu键合的显着趋势变得显而易见。这是由于一般努力降低诸如AU之类的原材料的制造成本和价格上涨所致。尽管在最近几十年中已经进行了许多研究,但大多数都集中在Au Ball/楔形上。这项研究的结果表明,键合参数,键合质量和可靠性密切相互联系。然而,与AU相比,Cu的不同材料特性(例如对氧化和硬度的依从性)意味着这些见解不能直接传递到Cu键合过程中。因此,有必要进一步研究。本文讨论了在各种键合参数下的键合界面形成的研究。Cu线在AlsICU0.5金属化上键合,并进行了键合参数优化以识别有用的参数组合。根据这种优化,使用低,中和高的美国功率和粘合力的参数组合组装不同的样品。通过剪切测试和HNO 3蚀刻进行了界面分析。在200 c退火168 h和1000 h的设备的横截面上分析了金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。 粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。使用EDX分析退火样品的金属间相形成,并根据相形成动力学进行解释。确定了三个主要的金属间相。2010 Elsevier Ltd.保留所有权利。
•Oleszkiewicz A,Pozzer A,Williams J,Hummel T(2024)环境空气污染破坏了化学感应敏感性 - 一种全球视角。SCI代表(印刷中)•Plaza-Diaz J,Ruiz-Ojeda FJ,López-Plaza B,Bradimonte-HernándezM,Álvarez-Mercado ai,Arcos-Castellanos L,Feliú-Batlle J,Hummel t,palma-Milla s,GILA a a imira nim a a a a hummella nimimira a imira nimimira nimimira a imirla nimimira nimimira)在营养不良的肿瘤学患者的口腔微生物组上。癌症(在印刷中)•Gudziol H,Guntinas-Lichius O,Hummel T(2024)Eine Chronische rhinische Rhinosinosisis tellte Stellte in Der Corona Pandemie keinen keinen risiko-oder schutzfaktor dar。hno(在印刷中)•Mastinu M,PüschnerA,Gerlach S,Hummel T(2024)味道和口服节感:PTC苦味,性别和年龄的作用。生理行为(在印刷中)•HänselM,Reichmann H,Haehner A,Schmitz-Peiffer H,Schneider H(2024)在自身免疫性脑炎后,根据抗体类型,自身免疫性脑炎后的海马功能障碍。j Neurol(在印刷中)•Drnovsek E,Weitkamp K,Murthy VN,Gurbuz E,Haehner A,Hummel T(2024)健康人和嗅觉功能障碍患者中气味混合物中气味的检测。EUR J NEUROSCI(在印刷中)•对不同鼻内三叉神经受体的激活的反应:行为,外围和中央层的证据•Mai Y,Flechsig J,Warr J,Warr J,Hummel T(2024)对不同内胸腔内胸腔受体的激活的反应:来自行为,蠕动和中心层的不同胸腔内部的证据。前Med(印刷中)其他出版物(章节,同行评审的评论,字母)Behav Brain Res (in press) • Álvarez-Mercado AI, López Plaza B, Plaza-Diaz K, Castellanos LA, Ruiz-Ojeda FJ, Brandimonte- Hernández M, Feliú-Batlle J, Hummel T, Milla SP, Gil A (2024) Regular Consumption of a Food Supplement Containing Miraculin Can Contribute to Reduce营养不良的癌症和味觉障碍患者的炎症和恶病质生物标志物:Clinmir Pilot研究。
4 5 6 1 D e partme n t o f C he mic a l and Bi o lo g ic a l E ng i nee ri ng , N o rt h w e st e r n U n iv e rsity, 21 4 5 7 Sh e ri da n Road , T e c hno l og ic a l I n stit u t e E 136 , Ev an st on , I L , 60208 , USA 8 9 2 Interdiscipli na ry Bi o l og ic a l Sci ence s Gr adua t e Pr og r a m, N o rt h w e st e r n U n iv e rsity, 2205 10 Tech Drive, 2 - 100 H ogan H a ll, Eva n st on , I L , 60208 , USA 11 12 3 C e nter for Sy n t he tic Bi o l og y, N o rt h w e st e r n U n iv e rsity, 2145 S he ri dan R oad , 13 Technologic a l I n stit u t e B 486 , Ev an st on , I L , 60208 , USA 14 15 4 These aut ho rs c on tri bu t ed equa ll y t o t he w o rk 16 17 Autho r Em a il Add resses : 18 19 C h arl o tt e H A b r aha ms on : c ab r aha ms on@u .no rt h w e st e r n。edu 20 21 brett j pal me r o:b r e tt pa lm e r o2025 @ u。no rt h w e st e r n。edu 22 23 n o l an w k enned y:no l an k enned y2 019@u。no rt h w e st e r n。edu 24
