和一个锅的不同)或意图(例如通过刀与使用它进行切割),我们人类可以毫不费力地描绘出与日常生活中日常物体的这种互动。在这项工作中,我们的目标是构建一个可以同样生成合理的手动配置的计算系统。具体来说,我们学习了一个基于扩散的常规模型,该模型捕获了3D相互作用期间手和对象的关节分布。给定一个类别的描述,例如“握着板的手”,我们的生成模型可以合成人手的相对配置和表达(见图1个顶部)。我们解决的一个关键问题是,该模型是什么好的HOI表示。通常通过空间(签名)距离场来描述对象形状,但人的手通常是通过由发音变量控制的参数网格建模的。我们提出了一个均匀的HOI表示,而不是在生成模型中对这些不同的代表进行建模,并表明这允许学习一个共同生成手和对象的3D扩散模型。除了能够合成各种合理的手和物体形状的综合外,我们的扩散模型还可以在跨任务的辅助推理之前作为通用,而这种表示是所需的输出。例如,重建或预测相互作用的问题对于旨在向人类学习的机器人或试图帮助他们的虚拟助手来说是核心重要性。重建的视频重新投影错误)或约束(例如我们考虑了这些行沿着这些行的两个经过深入研究的任务:i)从日常交互剪辑中重建3D手对象形状,ii)鉴于任意对象网格,合成了合理的人类grasps。为了利用学到的生成模型作为推论的先验,我们注意到我们的扩散模型允许在任何手动对象配置给定的(近似)log-likelihood梯度计算(近似)log-likelihoodhoodhood。我们将其纳入优化框架中,该框架结合了先前的基于可能性的指南与特定于任务的目标(例如已知对象网格的合成)推理。虽然理解手动相互作用是一个非常流行的研究领域,但现实世界中的数据集限制了3D中这种相互作用的限制仍然很少。因此,我们汇总了7种不同的现实世界交互数据集,从而导致157个对象类别的相互作用长期收集,并在这些范围内训练共享模型。据我们所知,我们的工作代表了第一个可以共同生成手和对象的生成模型,并且我们表明它允许综合跨类别的各种手动相互作用。此外,我们还经验评估了基于视频的重建和人类掌握合成的任务的先前指导的推断,并发现我们所学的先验可以帮助完成这两个任务,甚至可以改善特定于特定于任务的状态方法。
在过去的二十年里,医用核动力裤子的安全水平已经显著提高。正如世界核电运营商协会 (WANO) 所跟踪的那样。与此同时,设计要求也已降低,以简化其设计,提高其在核安全方面的深度。并提高其可用性、可操作性和经济性。通过使用先进的仪器和数字系统,越来越多地将精力放在防止异常事件和提高人机性能上。此外,通过由经过验证的分析工具和测试支持的原型演示,或通过确保设计基于经过验证的技术并得到简单的分析支持,可以增强安全性。测试和结果。通过在适用的条件下运行,在整个系统寿命内保持辐射保护和法规保持辐射暴露尽可能低(ALAR4)的概念正在被成功应用于降低辐射暴露,
日期:2025年2月24日,星期一,13:00-15:00 CET主持人:莱斯大学贝克公共政策研究所Harris Eyre,主管兼高级研究员,Neuro-Policy,Brain Capital Capital Alliance和Brain Capital Alliance和Brain Emantial董事,大脑经济枢纽和欧洲经济学经济学协会RAPPORTERASERADEREAR DAISEREAR>
尽管具有革命性的地位,但CRISPR/CAS技术确实具有明显的局限性和负债。CRISPR/CAS的最重要局限性是进行脱离目标编辑的潜力,因此CRISPR/CAS在意想不到的位置削减了DNA。这种脱离目标(OT)编辑可以扭曲功能实验的解释并引入噪声和可变性,从而降低实验结果和功能结论的可靠性。重要的是,在CRISPR的治疗应用中,OT活性尤其危险,即使频率非常低的OT编辑也可能具有深刻的灾难性结果2,3。为了应对这一挑战,该领域的许多努力都致力于改进Guiderna(GRNA)设计,以确保目标特异性4和工程CAS变体具有改善的忠诚度5。同时,测量OT效应的方法,例如指南seq 6,圆形序列7和site-seq 8,也有助于提高我们量化和合理化OT编辑的能力。此外,预测OT的能力对该领域的重要性提高,从而导致开发了多种用于预测OT位点的计算方法。
sengamala thayaari教育信托妇女学院(银禧(Silver Jubilee Institution))(Truchrappalli的Bharathidasan University的服务)(由NAAC&AN ISO 9001:2 NIRF - 2024)
3.7闭环回收可持续的概念由各个行业所包含,旨在通过重复废物材料来创建相同的产品和/或在其起源的过程中使用它们来减少环境影响。以恢复和再生材料/化合物为特征的受控回收过程可确保资源保持其最高的效用和价值。与开环回收不同的是,要回收的产品的起源和质量并不总是众所周知的,闭环回收的目的是无限期地回收而没有高质量/体积损失并最大程度地减少原始特性的降解。闭环回收不仅通过减少垃圾填埋场废物来使环境受益,而且还有助于限制与维生材料/化合物的提取/生产/生产相关的环境影响。本质上,闭环回收是希望通过循环经济实践
然而,尽管 CRISPR/Cas 技术具有革命性的地位,但它也存在明显的局限性和缺陷。CRISPR/Cas 最重要的限制是可能出现脱靶编辑,即 CRISPR/Cas 在非预期的位置切割 DNA。这种脱靶(OT)编辑会扭曲功能实验的解释,引入噪音和变异性,从而降低实验结果和功能性结论的可靠性。重要的是,OT 活性在 CRISPR 的治疗应用中尤其危险,在这种情况下,即使非常低频率的 OT 编辑也可能产生极其灾难性的后果 2,3 。为了应对这一挑战,该领域的许多努力都集中在改进 guideRNA(gRNA)设计以确保靶标特异性 4 和设计具有更高保真度的 Cas 变体 5 。同时,测量 OT 效应的方法,例如 GUIDE-seq 6 、CIRCLE-seq 7 和 SITE-seq 8 ,也有助于提高我们量化和合理化 OT 编辑的能力。此外,预测 OT 的能力对于该领域来说越来越重要,从而导致开发出各种用于预测 OT 位点的计算方法。