我们强烈认为NIST应该标准化经典的McEliece,这具有使其成为许多不同应用程序中最佳选择的属性。我们计划使用经典的麦克尔。- 经典McEliece是最保守的KEM,经典McEliece类别5是保护其他各种钥匙(ML-KEM,ML-DSA,SLH-DSA,FN-DSA,FN-DSA,LMS,LMS,XMSS等)的最佳选择。在运输和存储中。Classic McEliece扮演与SLH-DSA相似的角色,提供了非常保守的安全保证。- 小的密文和良好的性能使经典的mceliece成为许多静态封装键的最佳选择,其中有很多(Wineguard,s/s/mime,imsi加密,文件加密,噪声,Edhoc等)。对于许多这样的应用程序,关键的生成时间并不重要,并且可以在带外提供公共密钥。当带有带频带的公共密钥时,经典的Mceliece在几百个封装后具有最佳性能。对于ML-KEM提供最佳性能的静态封装用例,Classic McEliece是最好的备份算法。可以通过流键来保持内存要求较低。我们认为NIST应该标准化McEliece348864(类别1),McEliece460896(类别3)和McEliece6688128,McEliece6960119和McEliect8192128(类别5)。261 kb和524 kb封装密钥可以在1 MB公共钥匙不能的情况下使用。此外,我们认为NIST应该标准化自行车和HQC之一。自行车和HQC是用于短暂封装键的ML-KEM的最佳备份算法。此外,ML-KEM+自行车和ML-KEM+HQC混合动力车似乎比Frodokem更保守,同时还提供了更好的性能。我们目前不打算使用自行车或HQC,但是如果发现攻击,我们希望看到ML-KEM的标准化备份算法。这样的备份算法应具有不同的构造,而不是ML-KEM。这种实施独立加密备份算法的实践长期以来一直是电信行业的指导原则。Cheers,JohnPreußMattsson专家加密算法和安全协议,爱立信 - 您收到了此消息,因为您已订阅了Google组“ PQC-Forum”组。要取消订阅此组并停止从中接收电子邮件,请发送电子邮件至pqc-forum+unsubscribe@list.nist.gov。要查看此讨论,请访问https://groups.google.com/a/list.nist.gov/d/msgid/pqc-- forum/gvxpr07MB967849A40C10DF7DF7D8AE0462689482%40GVXPR07MB96678.ET.EFT.IT078.EFT.UT.UT.UT.UT.UT.UT.UT.UT.IT.UT.UT.IT.IT.IT077.EFT.IT077.EFT.IT077.ETRD07.ETROD77.ETRD07.ETRD07。
N ),并在 [Ben+97] 中被证明是渐近最优的。近年来,一种新的混合量子-经典 (HQC) 计算概念被提出[Llo00]并受到越来越多的关注,HQC 的概念被应用于计算机科学的多个领域[End+21; Ott+17; Liu+21; Ber+18]。通过将量子组件附加到经典计算机,两个部分相互补充,使得 HQC 兼具两者的优点,例如量子并行性[NC10]、数据存储和高效的算术运算。尽管一些文章讨论了 HQC 的详细结构,但在本文中,我们用第 2 部分来研究 HQC 的配置。此外,我们面临着将 Grover 算法应用于多解搜索问题时的低效率问题(这将遇到重复并恶化到 O ( N √
人类谷氨酰胺基环酶(HQC)引起了人们的关注,并成为阿尔茨海默氏病(AD)的潜在毒靶标,这是由于它通过翻译后的硫酸盐酸谷氨酸型淀粉样蛋白βββββββββ杆菌的临时涉及AD的病理。最近的2A期研究表明,基于竞争性苯咪唑的QC抑制剂PQ912,AD的效率的早期证据有希望,这也表现出了有利的安全性。这个发现引发了对AD治疗的新希望。在这篇综述中,我们构成了概述HQC抑制剂的发现和演变,对经典锌结合组(ZBG)的含量尤其感兴趣 - 近年来报道的化学物质。此外,我们重点介绍了几种高功率抑制剂,并讨论了QC抑制剂开发的新趋势和挑战,作为AD的替代性和有希望的疾病调整疗法。
摘要 - Quantum机器学习(QML)作为量子计算与机器学习(ML)的组合是探索的诺言方向,尤其是由于实现量子计算机的进步和所希望的量子优势。QML中几乎没有接近的领域是量子多代理增强学习(QMARL),尽管证明对解决工业管理,例如工厂管理,蜂窝访问和移动性合作有可能具有吸引力。本文提出了一种空中通信的用例,并引入了杂种量子古典(HQC)ML算法来解决它。此用例旨在提高飞行临时网络的连接性,并通过HQC多代理近端策略优化算法来解决,其中集中评论家的核心被数据重新上传变异量子电路所取代。结果表明,相对于可比的经典算法,早期达到收敛性以及这种解决方案的可伸缩性的性能略有提高:ANSATZ的大小增加,从而增加了可训练的参数的数量,从而导致了更好的现象。这些有希望的结果表明,Qmarl对与工业相关的复杂用例的潜力。索引术语 - Quantum Computing,多代理增强学习,交流,网络
1 土耳其科尼亚塞尔丘克大学药学院药物化学系 * 通讯作者电子邮件:kucukogluk35@hotmail.com 要点 人类谷氨酰胺环化酶 (hQC) 有两种同工型,即分泌型 QC (也称为 sQC) 和高尔基定位型 QC (也称为 isoQC 或 gQC)。 hQC 通过释放氨或水介导 N 端谷氨酰胺或谷氨酸残基的环化。 在某些疾病中,QC 的分泌水平会增加,例如阿尔茨海默氏症 (AD)、亨廷顿氏病 (HD)、黑色素瘤、甲状腺癌、动脉粥样硬化的快速形成、化脓性关节炎。 近年来,发现抑制 QC 的新药被认为是预防和治疗许多生理问题和疾病的重要方法。 已发现具有咪唑骨架的化合物具有抑制 QC 的潜力。这些药物中最引人注目的一种是瓦罗谷氨酸司他,目前正处于阶段研究中。 ARTICLEINFO 收稿日期:2022 年 5 月 21 日 接受日期:2022 年 6 月 25 日 发表日期:2022 年 7 月 15 日 关键词:阿尔茨海默氏症淀粉样蛋白β谷氨酰胺环化酶焦谷氨酸修饰瓦罗谷氨酸司他
通知 2024 年 3 月 27 日,康涅狄格州选址委员会(委员会)收到了韩华 Q Cells America, Inc.(HQC)的一份请愿书,要求根据康涅狄格州一般法规 (CGS) §4-176 和 §16- 50k 作出宣告性裁决,以建造、运营和维护位于康涅狄格州沃特福德诺里奇路 40 号的 4.0 兆瓦 (MW) 交流 (AC) 电池储能设施 (BESF) 1 及其相关设备,以及相关电气互连(请愿书或项目)。根据康涅狄格州机构法规 (RCSA) §16-50j-40,HQC 在 2024 年 3 月 26 日左右通知了毗邻的业主、沃特福德镇(镇)官员 2、蒙特维尔镇 3 官员以及拟议项目的州官员和机构。 2024 年 3 月 28 日,议会向镇和蒙特维尔镇发送了信函,表示议会已收到请愿书,并邀请市政当局在 2024 年 4 月 26 日之前就任何问题或意见与议会联系。2024 年 7 月 17 日,镇向议会提交了第 4 条意见,涉及可能影响位于拟议的 BESF 场地相邻地块上的康涅狄格州东部脑瘫联合医院大楼的噪音和振动。2024 年 4 月 22 日和 6 月 27 日,议会收到了康涅狄格州东部脑瘫联合医院关于安全、噪音、健康和能见度问题的意见。此外,2024 年 3 月 28 日,根据 RCSA §16-50j-40,委员会通知了其中列出的所有州机构,要求在 2024 年 4 月 26 日之前向委员会提交有关拟议项目的意见。2024 年 4 月 24 日,CEQ 提交了有关噪音缓解和符合州标准的意见。5 没有其他州机构就该项目提供书面意见。虽然委员会有义务根据法规咨询并征求州机构的意见,但委员会没有义务遵守州机构的意见。6 根据《统一行政程序法》的 CGS §4-176(e),行政机构必须在收到宣告性裁决请求后 60 天内采取行动。在 2024 年 5 月 9 日举行的例会上,根据 CGS §4-176(e),理事会投票决定将对该请愿书作出决定的日期定为不迟于 2024 年 9 月 23 日,这是根据 CGS §4-176(i) 作出最终决定的 180 天法定期限。
为量子电路制造空中桥梁 学期项目 一般信息 实验室:混合量子电路实验室 (HQC) 主管:Simone Frasca 博士 地点:EPFL PH、EPFL CMi 开始日期:尽快 联系方式:simone.frasca@epfl.ch 动机 量子技术正在开辟计算和传感领域的新前沿,共振结构在其中许多突破中发挥着至关重要的作用。但是,随着我们突破量子系统的可能性极限,我们面临着新的挑战,例如紧密排列的谐振器之间的干扰。这些不必要的共振被称为槽模式,它们会干扰读出电子设备,从而严重破坏量子性能。值得庆幸的是,研究人员找到了一个解决方案:空中桥梁。通过将传输线的两侧接地,空中桥梁可减少杂散电感,并将槽模式的共振频率推到量子应用感兴趣的频谱之外。利用这种技术,我们可以扩展量子元素的数量,而不需要多条低温管线,为量子计算和传感开辟新的可能性。
摘要。本文研究了如何将小信息泄漏(称为“提示”)纳入信息集解码(ISD)算法。特别是,分析了这些提示对求解(N,K,T)的影响 - 综合征 - 解码问题(SDP),即对长度为n,尺寸K和重量t误差的通用综合征解码。我们通过在基于代码后的量子后加密系统上通过现实的侧向通道来获得所有提示。一类研究的提示包括对错误或消息的部分知识,这些知识允许使用问题的适当转移来减少长度,维度或错误权重。作为第二类提示,我们假设已知误差的锤子权重,可以通过模板攻击来激励。我们提供了此类泄漏的改编的ISD算法。对于每个基于第三轮代码的NIST提交(Classic McEliece,Bike,HQC),我们显示每种类型需要多少个提示来将工作因素降低到要求的安全水平以下。,例如,对于经典的McEliece McEliece348864,对于175个已知消息条目,9个已知错误位置,650个已知的无错误位置或已知的锤击权重的29个子块的尺寸约为大小相等。
美国国家标准与技术研究所正在通过一个公开的、类似竞争的过程来选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) ,以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机问世之后。本报告根据公众反馈和内部审查,介绍了 NIST 后量子密码标准化流程第三轮候选算法的评估和选择过程。报告总结了 15 种第三轮候选算法,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然选择了多种签名算法,但 NIST 建议将 CRYSTALS–Dilithium 作为要实施的主要算法。此外,四种备用密钥建立候选算法将进入第四轮评估:BIKE、Classic McEliece、HQC 和 SIKE。这些候选算法仍在考虑未来的标准化。NIST 还将发布新的公钥数字签名算法征集提案,以扩充和多样化其签名组合。
美国国家标准与技术研究所正在通过一个公开的、类似竞争的过程来选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) ,以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机问世之后。本报告根据公众反馈和内部审查,介绍了 NIST 后量子密码标准化过程第三轮候选算法的评估和选择过程。报告总结了第三轮候选算法中的每一种,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然有多个签名算法