摘要:热休克蛋白 (HSP) 是一种分子伴侣,可协助多种细胞活动,包括蛋白质折叠、细胞内运输、蛋白质复合物的组装或拆卸以及错误折叠或聚集蛋白质的稳定或降解。HSP40 也称为 J 结构域蛋白 (JDP),是最大的家族,有超过 50 个成员,包含高度保守的 J 结构域,负责与 HSP70 结合并刺激 ATPase 活性作为辅助伴侣。肿瘤抑制基因 p53 (p53) 是人类癌症中最常见的突变基因,是与 HSP40/JDP 功能性相互作用的蛋白质之一。大多数 p53 突变都是错义突变,导致获得意想不到的致癌活性,称为功能获得 (GOF),以及肿瘤抑制功能的丧失。此外,野生型 p53 (wtp53) 和突变型 p53 (mutp53) 的稳定性和水平分别对其肿瘤抑制和致癌活性至关重要。然而,wtp53 和 mutp53 的调节机制尚未完全了解。越来越多的报告表明 HSP40/JDPs 调节 wtp53 和 mutp53 的水平和/或活性。在这里,我们总结了与 HSP40/JDPs 与 p53 和癌症信号传导之间的联系相关的最新知识,以提高我们对肿瘤抑制 wtp53 和致癌 mutp53 GOF 活性调节的理解。
由于病原体抗性以及使用化学农药的高成本和不利的环境影响,研究人员正在寻找其他方法来控制害虫和疾病,例如生物控制。许多研究证明了大蒜植物生化化合物的抗菌作用,但没有关于大蒜植物热稳定蛋白的抗菌活性的报道。考虑到这些蛋白质在应激中的可靠作用,进行了这项研究,以研究这些蛋白质在拉斯托尼亚茄型和链霉菌链球菌细菌上的抗菌作用。使用完全随机的阶乘设计,在单独的实验中测试了每个细菌的抗菌特性,该设计具有三个因素和三个重复。从克隆,组织和应用于甲状腺菌细菌的各种浓度的热稳定蛋白在抑制区的直径和最高抑制区的直径上差异很显着差异,与哈马丹克隆的叶片有关。最低抑制浓度MIC和最小杀菌浓度MBC与Hamadan克隆的叶HSP有关。结果,与其他治疗相关的Hamadan叶具有较小的MIC和MBC以及较大的抑制区显示出最高的抑制作用。在SDS-PAGE电泳中,仅观察到HSP40家族的叶子热稳定蛋白电泳带,而在大蒜丁香家族中,小HSP(SHSP),HSP40,HSP40,HSP70,HSP90和HSP90和HSP100。doi:10.22126/atic.2024.9201.1106©作者2024。Razi University出版结果表明,来自大蒜的热稳定蛋白可以用作针对致病性孢菌细菌的主要抗菌剂,但没有生物学作用作为s. cabies细菌的抗菌剂。本研究的结果表明,大蒜植物的HSP可用于对甲状腺菌细菌产生抗性。
与恶性疟原虫的蛋白有关的蛋白质的结构和功能表征。这是第一个重点是PFHSP70-1在蛋白质功能和稳定性中的生物物理表征,对寄生虫的细胞保护作用。结果支持破坏蛋白质的C末端尾巴相互作用以开发新抗菌素的策略。还确定了PFHSP70-1和恶性疟原虫HSP40(PFJ1)之间功能相互作用的第一个证据。这些在疟疾领域的研究工作与“健康印度”的国家任务保持一致,博士研究获得了全球认可,并于2009年获得了Eli-Lilly亚洲杰出论文奖(一等奖)。
摘要:热休克蛋白(HSP)是保守的和无处不在的蛋白质,在原核和真核生物体中既表现出来,又在细胞稳态中发挥着重要作用,包括调节蛋白质的稳态,凋亡,凋亡,自噬,自噬,信号途径,维持信号途径,保护各种压力,例如各种应激等(例如,各种应激)(例如,氧气,氧化异常)。因此,HSP在包括恶性脑肿瘤在内的肿瘤细胞中高度表达,它们也与癌细胞侵袭,转移和对放射化学疗法的抗性相关。在当前的综述中,我们旨在评估中枢神经系统恶性肿瘤中HSPs表达的诊断和预后值,以及通过应用抑制剂(作为单纯疗法或与其他治疗方式结合使用)来调节伴侣水平的新型治疗方法。的确,对于几种蛋白质(即HSP10,HSPB1,DNAJC10,HSPA7,HSP90),患者的蛋白水平表达与较差的总体生存预后之间的直接相关性证明,可以在神经结合学中使用它们作为预后标记。尽管在各种固体和血液学恶性肿瘤中研究了HSP的小分子抑制剂,特别是针对HSP27,HSP70和HSP90家族的小分子抑制剂,但仍未在CNS肿瘤中充分探索其潜力。尚未在GBM中评估一些新合成的剂(例如HSP40/DNAJ抑制剂)。然而,据报道的临床前研究为应用HSP抑制剂靶向脑肿瘤提供了证据和理由。
基因id名称ENSMUSG0000000018796酰基-COA合成型长链家族成员1(ACSL1)ENSMUSG0000000000209994 PININ(PNN)ENSMUSG000000000026987溴模块附近的溴模域,与锌指域相邻,2B(BAZ2B)ENSMUSMUSG00310101010101010101010101010101010101010101010101010101010101010101010101010101010101010010染色体(USP9X)ENSMUSG0000000026207 SPEG COMPLEX基因座(SPEG)ENSMUSG00000000000039197腺苷激酶(ADK)Ensmusg0000000098812 MicroRNA 7578(miR7578) Ensmusg0000000031871 cadherin 5(CDH5)Ensmusg0000000033365 Importin 13(IPO13)Ensmusg000000000020464 polyribonucleotide核苷酸核苷酸核苷酸核苷酸转移剂1(PNPT1) Ensmusg0000000037058聚腺苷结合蛋白相互作用蛋白2(PAIP2)Ensmusg00000000000042719 N(Alpha) - 乙基转移酶25,NATB辅助亚基(NaA25) ENSMUSG0000000022214 DDB1和CUL4相关因子11(DCAF11)Ensmusg0000000000000014426有丝分裂原激活的蛋白激酶激酶激酶激酶激酶激酶4(MAP3K4)ENSMUSG000000000028626,IX型,Alpha 2pp collpha 2ppe(Col9aa2) (KLF6)ENSMUSG00000052798核孔蛋白107(NUP107)ENSMUSG000000000031446 CULLIN 4A(CUL4A)ENSMUSG0000000026926肽酶(线粒体处理 ENSMUSG00000072612 predicted gene 10382 (Gm10382) ENSMUSG00000045868 GTPase, very large interferon inducible 1 (Gvin1) ENSMUSG00000031715 SWI/SNF related, matrix associated, actin dependent regulator of
引言纤维板层肝细胞癌 (FLC) 是一种罕见且通常是致命的青少年和青年原发性肝癌 (1, 2)。手术切除是目前 FLC 的标准治疗方法;然而,这不足以治愈局部晚期或转移性疾病患者。目前尚无被证实有效的 FLC 全身疗法,尽管目前的临床研究评估了化疗、免疫疗法和靶向疗法的各种组合的效用 (1)。FLC 是由于 19 号染色体的 1 个拷贝中缺失约 400 kB 所致,这导致 DNAJB1 的第一个外显子(热休克蛋白 40 (Hsp40))取代了 PRKACA 的第一个外显子(蛋白激酶 A 的催化亚基)。由此产生的 DNAJB1-PRKACA 是恶性基因组中发现的唯一复发性结构重排 (3–5)。使用 CRISPR-Cas9 重建产生融合嵌合体的约 400 kB 缺失足以在小鼠模型中重现 FLC (6, 7)。此外,使用睡美人转座子直接表达嵌合体会产生 FLC 样肿瘤 (7),这表明嵌合融合蛋白的表达,而不是其他蛋白质的缺失,是 FLC 的致癌驱动因素。目前治疗 FLC 的主流方法是基于将其归类为亚变异型肝细胞癌 (HCC) (8)。然而,FLC 与 HCC 不同,具有独特的病理学分子驱动因素和独特的组织病理学特征。此外,HCC 导向疗法尚未证明对 FLC 有效。因此,许多研究人员已开始评估 FLC 中过度表达的致癌通路,包括极光激酶 A、EGFR、mTOR 和芳香酶 (9–11)。不幸的是,针对这些途径的方法尚未证明有希望进行进一步研究(12,13)。为了找到新的有效治疗方法,我们进行了一项无偏见的
