3 加拿大蒙特利尔大学细胞病理学和生物学系 摘要:对原代造血干细胞和祖细胞 (HSPC) 进行精确基因编辑将有助于单基因疾病的治愈性治疗以及疾病建模。然而,即使使用 CRISPR/Cas 系统,精确效率仍然有限。通过优化向导 RNA 递送、供体设计和添加剂,我们现在已经在原代脐带血 HSCP 上获得了 >90% 的平均精确编辑效率,同时毒性极小且未观察到脱靶编辑。实现如此高效率所需的主要协议修改是添加 DNA-PK 抑制剂 AZD7648,以及在供体中加入破坏间隔区的静默突变以及破坏 PAM 序列的突变。至关重要的是,编辑甚至跨越了祖细胞层级,没有显著扭曲层级或影响集落形成细胞测定中的谱系输出或高自我更新潜力长期培养起始细胞的频率。由于许多疾病的建模需要杂合性,我们还证明了可以通过添加突变体和野生型供体的特定混合物来调整整体编辑和杂合性。通过这些优化,现在可以在人类 HSPC 中直接以近乎完美的效率完成编辑。这将为治疗策略和疾病建模开辟新的途径。
该药品需要接受额外监测。这将可以快速识别新的安全信息。请医疗保健专业人员报告任何疑似不良反应。有关如何报告不良反应,请参见 4.8 节。 1. 药品名称 Casgevy 4 - 13 × 10 6 细胞/mL 输液分散液 2. 定性和定量组成 2.1 一般描述 Casgevy(exagamglogene autotemcel)是一种经过基因改造的自体 CD34 + 细胞富集群,含有通过 CRISPR/Cas9 在 BCL11A 基因的红细胞特异性增强子区体外编辑的造血干细胞和祖细胞 (HSPC)。 2.2 定性和定量组成 每个患者专用的 Casgevy 小瓶均含有 exagamglogene autotemcel,其浓度取决于批次,是经过基因改造的自体 CD34 + 细胞富集群。该药品包装在一个或多个小瓶中,总共含有 4-13 × 10 6 个细胞/毫升的富含 CD34 + 细胞的活细胞群,悬浮在冷冻保存溶液中。每瓶含有 1.5 至 20 毫升的输注分散液。药品的定量信息,包括要给药的小瓶数量(见第 6 节),均在运输所用冷冻运输器盖子内的批次信息表 (LIS) 中显示。已知作用的辅料 此药品每毫升含 50 毫克二甲基亚砜 (DMSO)。此药品每毫升含 3.5 毫克钠。有关辅料的完整列表,见第 6.1 节。3. 药物形式 输注分散液。半透明的细胞分散液,不含异物。
1. 为了在小鼠 HSPC 中实现有效的同源重组 (HR) 事件,需要具有高编辑效率的特定单向导 RNA (sgRNA)。我们使用 CrispRGold 程序 ( https://crisprgold.mdc-berlin.de ) 来设计特定的 sgRNA 并预测潜在的脱靶 ( Chu et al., 2016a )。每个目标序列应设计几个特定的 sgRNA。必须通过使用 T7 内切酶 I 测定 ( Guschin et al., 2010 ) 测量错配的 DNA 异源双链体以及对至少 2 种主要血细胞类型(例如 B 细胞和 T 细胞)的 PCR 产物进行 Sanger 测序来验证所有 sgRNA 的编辑效率。可以从 IDT、Synthego 或其他供应商处订购化学修饰或未修饰形式的 sgRNA。 2. 供体模板的最佳设计对于小鼠 HSPC 中的高效 HR 至关重要。供体模板包括 5'、3' 同源臂和所需的修饰基因序列。同源臂的长度取决于目标序列的特异性,每个同源臂由 600 到 2000 bp 组成。AAV 基因组的包装能力是设计供体模板的一个限制,因为基于 AAV 的供体模板的最大长度不应超过 4.5kb。如果没有使用报告基因,则应通过引入可用于量化 HR 效率的沉默突变将限制性酶识别位点添加到修饰的基因序列中。3. 为了通过 PCR 扩增和测序量化目标位点中的 HR 和非同源末端连接 (NHEJ) 事件,必须在外部设计正向或反向引物,或两者
核酸疗法具有沉默,表达或编辑基因的巨大潜力。然而,基于核酸的药物需要化学修饰和复杂的纳米技术,以防止其降解,减少免疫刺激作用并确保细胞内递送。脂质纳米颗粒(LNP)技术是当前的黄金标准输送平台技术,它已使第一种siRNA药物Onpattro和COVID-19-19-MRNA疫苗的临床翻译能够进行临床翻译。尽管如此,目前批准的LNP系统主要适合静脉内治疗后地方给药或肝脏输送后的疫苗目的。在这里,我引入了一个基于天然脂蛋白的纳米传递平台,该平台防止了小型干扰RNA(siRNA)的过早降解,以确保其靶向和细胞内递送到造血茎和祖细胞和祖细胞(HSPC)中。建立了稳定地融入其核心的原型载脂蛋白脂质纳米颗粒(ANP)后,我们构建了一个全面的库,我们彻底地表征了单个ANP的物理化学特性。在对所有制剂进行体外筛选后,我们选择了八个代表图书馆多样性的siRNA-ANP,并确定了它们使用乱伦施用方案在小鼠中的免疫细胞亚群中沉默溶酶体相关的膜蛋白1(LAMP1)的能力。我们的数据表明,使用不同的ANP,我们可以在免疫细胞亚群及其骨髓祖细胞中实现功能基因沉默。除了基因沉默之外,ANP平台接合免疫细胞的固有能力为其提供了巨大的潜力,可以将其他类型的核酸疗法传递给HSPC。
自体造血干细胞移植 (ASCT) 可改善多发性骨髓瘤 (MM) 患者的生存率。然而,许多患者无法通过粒细胞集落刺激因子 (G-CSF) 动员收集到最佳数量的 CD34 + 造血干细胞和祖细胞 (HSPC)。莫替沙福肽是一种新型环肽 CXCR4 抑制剂,具有延长的体内活性。GENESIS 试验是一项前瞻性、3 期、双盲、安慰剂对照、多中心研究,目的是评估莫替沙福肽 + G-CSF 相对于安慰剂 + G-CSF 在动员 MM 患者进行 ASCT 的 HSPC 方面的优势。主要终点是两次血液分离术中收集到 ≥6 × 10 6 CD34 + 细胞 kg –1 的患者比例;次要终点是在一次血液分离术中实现这一目标。共有 122 名接受 ASCT 的 MM 成人患者在 5 个国家的 18 个研究中心入组,并按 2:1 的比例随机分配接受莫替沙福肽 + G-CSF 或安慰剂 + G-CSF 进行 HSPC 动员。莫替沙福肽 + G-CSF 使 92.5% 的患者成功达到主要终点,而安慰剂 + G-CSF 组为 26.2%(比值比 (OR) 53.3,95% 置信区间 (CI) 14.12–201.33,P < 0.0001)。莫替沙福肽 + G-CSF 还使 88.8% 的患者达到次要终点,而安慰剂 + G-CSF 组为 9.5%(OR 118.0,95% CI 25.36–549.35,P < 0.0001)。 Motixafortide + G-CSF 安全且耐受性良好,最常见的治疗中出现的不良事件是短暂的 1/2 级注射部位反应(疼痛,50%;红斑,27.5%;瘙痒,21.3%)。总之,与安慰剂 + G-CSF 相比,Motixafortide + G-CSF 在两次白细胞分离术中动员的 CD34 + HSPC 数量显著增加,同时优先动员更多免疫表型和转录原始的 HSPC。试验注册:ClinicalTrials.gov,NCT03246529
简介戴蒙德-布莱克凡贫血 (DBA) 是一种罕见的先天性骨髓衰竭疾病,通常在婴儿期表现为大细胞性贫血和红细胞减少症 (1, 2)。DBA 与腭裂、肾脏和心脏缺陷、生长迟缓等身体异常以及某些癌症风险增加有关 (3, 4)。虽然发育不全性贫血是儿童的主要特征,但老年患者也可能出现骨髓细胞减少、全血细胞减少和免疫缺陷,表明造血干细胞 (HSC) 受损 (5, 6)。经典的 DBA 是由 20 个小亚基或大亚基核糖体蛋白 (RP) 基因中的 1 个发生种系杂合功能丧失突变引起的,导致核糖体的生物合成和/或功能缺陷。较不常见的是,GATA1 (7)、EPO (8)、ADA2 (9) 和 TSR2 (10) 的突变会导致 DBA 样增生性贫血。最常见的 DBA 基因是 RPS19,大约 25% 的患者检测到突变。接下来最常见的突变基因是 RPL5 (~7%)、RPS26 (~7%) 和 RPL11 (~5%) (1)。目前对 DBA 的治疗方法包括铁螯合慢性红细胞输注;糖皮质激素(可促进红系祖细胞扩增)和异基因造血干细胞移植 (HSCT),所有这些疗法都与严重毒性有关。DBA 相关红系衰竭的机制尚不完全清楚。对患者造血干细胞和祖细胞 (HSPC) 的分析显示,红系祖细胞扩增存在缺陷,并伴有红系祖细胞病理性凋亡 (1, 11–14)。可能的解释包括整体翻译受损 (15, 16);BAG1 (17)、CSDE1 (17) 和 GATA1 (18, 19) 等红细胞生成所必需的转录本的选择性翻译受损;由于
简介戴蒙德-布莱克凡贫血 (DBA) 是一种罕见的先天性骨髓衰竭疾病,通常在婴儿期表现为大细胞性贫血和红细胞减少症 (1, 2)。DBA 与腭裂、肾脏和心脏缺陷、生长迟缓等身体异常以及某些癌症风险增加有关 (3, 4)。虽然发育不全性贫血是儿童的主要特征,但老年患者也可能出现骨髓细胞减少、全血细胞减少和免疫缺陷,这表明造血干细胞 (HSC) 受损 (5, 6)。经典的 DBA 是由 20 个小亚基或大亚基核糖体蛋白 (RP) 基因中的 1 个发生种系杂合功能丧失突变引起的,导致核糖体的生物合成和/或功能缺陷。较不常见的是,GATA1 (7)、EPO (8)、ADA2 (9) 和 TSR2 (10) 的突变会导致 DBA 样增生性贫血。最常见的 DBA 基因是 RPS19,大约 25% 的患者检测到突变。接下来最常见的突变基因是 RPL5 (~7%)、RPS26 (~7%) 和 RPL11 (~5%) (1)。目前对 DBA 的治疗方法包括铁螯合慢性红细胞输注;糖皮质激素(可促进红系祖细胞扩增)和异基因造血干细胞移植 (HSCT),所有这些疗法都与严重毒性有关。DBA 相关红系衰竭的机制尚不完全清楚。对患者造血干细胞和祖细胞 (HSPC) 的分析显示,红系祖细胞扩增存在缺陷,并伴有红系祖细胞病理性凋亡 (1, 11–14)。可能的解释包括整体翻译受损 (15, 16);BAG1 (17)、CSDE1 (17) 和 GATA1 (18, 19) 等红细胞生成所必需的转录本的选择性翻译受损;由于