首字母缩略词和缩写 B BEVT 蓝色经济评估工具包 C CMLRE 海洋生物资源和生态中心 CMFRI 中央海洋渔业研究所 CMPA 沿海和海洋保护区 CMSP 沿海海洋空间规划 CPCB 中央污染控制委员会 CRZ 沿海监管区 CSIR 科学与工业研究理事会 D DO 溶解氧 E EEZ 专属经济区 ES 生态系统服务 ESCAP 联合国亚洲及太平洋经济社会委员会 EUNIS 欧洲自然信息系统 F FSI 印度森林调查局 G GDP 国内生产总值 GET 全球生态系统类型 GIF 全球指标框架 GOAP 全球海洋账户框架 GoI 印度政府 GSI 印度地质调查局 H HTL 高潮线 I IAEG-SDGs 可持续发展目标指标跨机构专家组 ICMBA 重要沿海和海洋生物多样性区域 IOC-UNESCO 政府间海洋学委员会 UNESCO INCOIS 印度国家海洋信息服务中心 ISRO 印度空间研究组织IUCN 国际自然保护联盟 IUU 非法、无管制和未报告的捕捞活动 K km 公里 km 2 平方公里
在这项研究中,具有活性层的有机太阳能电池(OSC),非富烯烯(NFA)Y6作为受体的多种混合物,以及供体PBDB-T-2F作为供体的供体,通过一维太阳能能力模拟(SCAPS-1D)的一维太阳能(SCAPS-1D)模拟了这种类型的polimer-iC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC的型号模拟。活动层。pfn-br界面层固定在OPV设备中,可提供总体增强的开路电压,短路电流密度和填充因子,从而显示设备的性能。PEDOT:PSS是一种电导性聚合物溶液,由于其较强的孔亲和力,良好的热稳定性,高功能和高透明度在可见范围内,它已在太阳能电池设备中广泛使用作为孔传输层(HTL)。有机太阳能电池的结构是ITO/PEDOT:PSS/BTP-4F:PBDB-T-2F/PFN-BR/AG。首先,将活动层厚度优化为100 nm;之后,活动层厚度最高为900 nm。这些模拟的结果表明,活动层厚度可能明显达到500 nm,然后随着600 nm的活性层的增加而降低,还注意到短路电流和填充因子随着600 nm的增加而增加,而填充层则从600 nm的增加,而开放电压电路则随着活性层的增加而增加。最佳厚度为500 nm。
钙钛矿太阳能电池 (PSC) 因其高功率转换效率 (PCE) 和低制造成本而备受关注。人们采用了不同的方法来提高 PSC 的 PCE 和稳定性,例如成分工程 [1,2]、载流子传输层改性 [3] 和异质结构 [4]。最近,具有新颖结构的碳基单片钙钛矿太阳能电池 (mPSC) 已经成为以合理成本商业化大面积钙钛矿太阳能电池 (PSC) 最有前途的设计之一。此外,碳基设计无需使用 Spiro-OMeTAD 等空穴传输材料 (HTM)。由于制造成本也较低,因此可以开发出低成本的光伏系统。为了进一步提高性能,采用了加法工程方法。 mPSC 由四层连续层组成,如图 S1(支持信息)所示,包括玻璃/FTO/致密-TiO 2 /介孔-TiO 2 /介孔-ZrO 2 /碳。这些 mPSC 中填充有钙钛矿,从而分别充当吸光层。在这种设计中,钙钛矿同时充当空穴传输层 (HTL) 和吸收层 [5] 。为了提高 mPSC 的性能,人们探索了不同的技术,包括反溶剂优化 [6] 、后处理 [7] 和添加剂工程 [8] 。从上面提到的方法来看,添加剂工程非常有前景且易于使用,并且在众多
Acronyms and Abbreviations B BEVT Blue Economy Valuation Toolkit C CMLRE Centre for Marine Living Resources and Ecology CMFRI Central Marine Fisheries Research Institute CMPA Coastal & Marine Protected Areas CMSP Coastal Marine Spatial Planning CPCB Central Pollution Control Board CRZ Coastal Regulatory Zone CSIR Council of Scientific & Industrial Research D DO Dissolved Oxygen E EEZ Exclusive Economic Zone ES Ecosystem Services ESCAP United Nations Economic and Social Commission for Asia and the Pacific EUNIS European Nature Information System F FSI Forest Survey of India G GDP Gross Domestic Product GET Global Ecosystem Typology GIF Global Indicator Framework GOAP Global Ocean Accounts Framework GoI Government of India GSI Geological Survey of India H HTL High Tide Line I IAEG-SDGs Inter-agency and Expert Group on Sustainable Development Goal Indicators ICMBA Important Coastal and海洋生物多样性地区IOC-UNESCO政府间海洋学委员会联合国教科文组织印度国家海洋信息服务中心ISRO印度空间研究组织IUCN国际自然保护工会IUU非法,不受监管的,未报告的K KM KM KM KM 2平方公里2平方公里
抽象材料参数变化是影响太阳能电池设备性能的主要贡献者之一,因此,使用Taguchi设计来优化材料参数以达到最大功率转换效率(PCE)。本文使用L 32(2 8)Taguchi设计讨论了使用氧化石墨烯(GO)孔传输层(HTL)的钙钛矿太阳能电池(PSC)的最佳建模。使用太阳能电池电容模拟器(SCAP)进行设备仿真,而L 32(2 8)Taguchi设计用于设备优化。最终结果表明,L 32(2 8)Taguchi设计已显着优化了设备参数,其中FTO厚度,FTO供体浓度,TIO 2厚度,TIO 2供体浓度,CH 3 NH 3 NH 3 NH 3 NH 3 PBI 3-X CL X厚度,CH 3 NH 3 NH 3 NH 3 PBI 3-X CL X供体浓度,厚度为1.厚度为1.厚度。 -3,0.03 µm,1 x 10 20 cm -3,0.9 µm,1 x 10 20 cm -3,0.03 µm和1 x 10 20 cm -3相应地。方差分析(ANOVA)表明CH 3 NH 3 PBI 3-X Cl X厚度是影响设备PCE的最主要输入参数。优化的输入参数产生的最大可达到的PCE为35.91%,信噪比(SNR)为31.11 dB。关键字:方差分析,氧化石墨烯,孔传输层,功率转换效率,信噪比
背景:在热带和亚热带国家的人们中,疟疾仍然是数十年来的主要健康问题。恶性疟原虫是引起严重疟疾并应对主要死亡率的关键物种之一。此外,该寄生虫对所有推荐药物和疗法的人产生了抵抗力。因此,迫切需要采用可靠疫苗的形式采取预防措施,以实现疟疾自由世界的目标。表面蛋白是亚基疫苗开发的可取选择,因为它们是由宿主免疫细胞迅速检测和参与的。此外,丰富的表面或膜蛋白可能会导致疫苗诱导的抗体对病原体的调整。结果:在我们的研究中,我们列出了文献中所有这些表面蛋白,这些蛋白可能在功能上很重要且对于疟原虫的感染和免疫逃避至关重要。八个质子表面和膜蛋白来自前肌细胞和红细胞阶段。使用免疫信息工具预测了这些蛋白质的三十七个七个表层(B-细胞,CTL和HTL表位),并与合适的肽接头一起设计疫苗构建体。tlr -4激动剂肽佐剂,然后是Padre序列和EAAAK接头。TLR -4受体与构造的预期模型结构对接。在模拟的生理环境下,发现疫苗和TLR -4的复合物,最低的能量-1514。结论:这项研究提供了一种新型的多源构建体,可以进一步利用,以开发疟疾的有效疫苗。
拟议的研究涉及“主题领域 1:将海藻转化为低碳燃料和生物产品”,并计划开发一种低成本连续催化热液液化 (CHTL) 工艺 (TRL2→4),该工艺能够处理腐蚀性原料,以展示将褐藻 Saccharina latissima (糖海带) 中的多糖最佳转化为低碳、稳定且高能量密度 (>35 MJ/kg) 的生物油/生物原油前体 (产量 >45 wt.%),用于可持续航空燃料 (SAF)。为了进一步提高可行性和可持续性,我们建议探索 i) 储存和预处理方法,以保存多糖,同时降低灰分/盐含量;ii) CHTL 反应器系统的低成本涂层,以承受与连续、热效率高、高通量反应器运行相关的腐蚀性反应条件。我们工艺开发工作的总体目标是制定适用于农场藻类生物精炼模式的糖海带连续 CHTL 加工蓝图,使温室气体排放减少 60% 以上(石油原油基线)。所提出的方法解决了目前在以下方面的知识空白:1)节能高效的海带储存,保存多糖;2)HTL 原料的高盐/灰分管理;3)生物原油的稳定性和热值;4)连续水热加工以获得高能生物原油;5)反应器腐蚀问题,以解决在更高 TRL 下生产生物原油的可行性。该项目将使用由低成本 304H 钢制成的具有耐腐蚀涂层的 CHTL 反应器系统,展示从糖海带中连续生产 500 小时或 3 周的油,并在考虑 SAF 途径的同时,通过 TEA 和 LCA 展示经济和环境影响。
2. “水溶性富勒烯衍生物的 FTNMR 研究”国际会议“生物系统中的磁共振” (21 届 ICMRBS) 2005 年 1 月 16-21 日,海得拉巴。Rachana Singh、Sanjay Kanojia、Ajit Srivastava、TH Goswami、DN Tripathi 3. “非常规富勒烯核星形二元材料”国际会议“电子纳米材料”2006 年 11 月 27-29 日,C-MET,浦那。Rachana Singh、TH Goswami 4. “铁涂层富勒烯醇材料:优秀的铁磁化合物”全国会议“智能材料和最新技术”2007 年 2 月 22-23 日,蒂鲁帕蒂。 Rachana Singh、TH Goswami 5.基于富勒烯的光伏材料的合成与表征国家纳米材料和纳米技术研讨会,2007 年 3 月 24-25 日;勒克瑙大学,勒克瑙。 Rachana Singh、TH Goswami、DK Setua、KU Bhasker Rao、RS Anand 获得最佳海报奖 6. 新型星形富勒烯-有机硅烷二元大分子 光伏能源生产和利用新兴趋势全国会议,2008 年 3 月 27-29 日 印度理工学院坎普尔分校 Rachana Singh、TH Goswami、DK Setua、KU Bhasker Rao、RS Anand 7. TAPSUN 会议 2012 在新德里 NPL 举行 8. 从破烂石墨简便合成氧化石墨烯以用于设备应用 Samya Naqvi、Gaurav Kumar、Saba Khan、Neha Gupta、Niharika Saxena、Neeraj Chaudhari、Pramod Kumar、Rachana Kumar* 和 Suresh Chand MACRO 2015 获得 ACS 最佳海报奖* 9. 有机光伏先进替代 HTL 材料特邀演讲*,“第一届电力工程先进材料国际会议”(ICAMPE-2015)于 2015 年 12 月 11-13 日在印度喀拉拉邦科塔亚姆圣雄甘地大学举行。
“ Crowe Horwath HTL顾问Pvt。ltd.(CHHTL)不接受任何个人或实体在其报告内容或报告中包含的任何信息或报告中的任何错误或遗漏的任何责任。任何人或实体在其报告中或其任何部分的任何用途,依赖或出版物都有其自身风险。在任何情况下,CHHTL或其股东,董事或人员均不得承担任何当事方的责任,损失,成本,费用,伤害或与本报告有关的损害或其他损害或其他损害,包括没有限制任何间接,特殊,偶然,惩罚性,惩罚性,惩罚性或结果损失,责任,责任,责任或损害的任何形式。我们的意见是基于在本报告日期准备报告以及经济,市场和其他条件时向我们提供的信息。这种情况可能会在相对较短的时间内发生显着变化。在发布本报告后,如果情况发生重大变化,或者有其他信息可用,此处表达的结论和意见可能需要修订。在任何情况下,CHHTL都不需要更新此报告。本报告中表达的陈述和观点是真诚的,并认为这种陈述和观点不是错误或误导。收件人应进行自己的查询和评估,以验证行业报告中包含的信息。本行业报告并未声称提供收件人可能需要的所有信息才能做出决定。前瞻性陈述本行业报告包含估计/预测/展望以及可能被视为前瞻性陈述的陈述。这些陈述是基于许多假设,期望和估计,尽管我们认为是合理的,但固有地属于重要的不确定性和偶然性,其中许多超出了我们自己的控制权或现场招待有限公司的控制,或者可能反映了未来的业务决策。该信息的接收者建议估计/预测/前景可以固有地视为暂定。由于对未来事件的主观判断和固有的陈述固有的不确定性,因此无法保证未来的结果或随后的估计/预测/展望与行业报告中设置的估计/预测/展望和其他语句不会有很大差异。此免责声明必须伴随本行业报告的每一本副本,该报告是一个不可或缺的文档,必须全面阅读。
会议论文 1. “富勒烯中的迈克尔加成反应” 2004 年 2 月 27-28 日在古吉拉特大学举行的“富勒烯、杯沙林和冠醚全国研讨会”上做口头报告 ThakoHari Goswami*、Rachana Singh、Sarfaraz Alam、GN Mathur 2. “水溶性富勒烯衍生物的 FTNMR 研究” 国际会议“生物系统中的磁共振” (21 届 ICMRBS) 2005 年 1 月 16-21 日,海得拉巴。Rachana Singh、Sanjay Kanojia、Ajit Srivastava、TH Goswami、DN Tripathi 3. “非常规富勒烯核星形二元材料” 国际会议“电子纳米材料” 2006 年 11 月 27-29 日,C-MET,浦那。 Rachana Singh、TH Goswami 4.“铁包覆富勒烯材料:优良的铁磁化合物”全国“智能材料与最新技术”会议,2007 年 2 月 22-23 日,蒂鲁帕蒂。Rachana Singh、TH Goswami 5.富勒烯基光伏材料的合成与表征全国纳米材料与纳米技术研讨会,2007 年 3 月 24-25 日;勒克瑙大学,勒克瑙。 Rachana Singh、TH Goswami、DK Setua、KU Bhasker Rao、RS Anand 获得最佳海报奖 6. 新型星形富勒烯-有机硅烷二元大分子 光伏能源生产和利用新兴趋势全国会议,2008 年 3 月 27-29 日 印度理工学院坎普尔分校 Rachana Singh、TH Goswami、DK Setua、KU Bhasker Rao、RS Anand 7. TAPSUN 会议 2012 在新德里 NPL 举行 8. 从破烂石墨简便合成氧化石墨烯以用于设备应用 Samya Naqvi、Gaurav Kumar、Saba Khan、Neha Gupta、Niharika Saxena、Neeraj Chaudhari、Pramod Kumar、Rachana Kumar* 和 Suresh Chand MACRO 2015 获得 ACS 最佳海报奖* 9. 有机光伏先进替代 HTL 材料特邀演讲*,“第一届电力工程先进材料国际会议”(ICAMPE-2015)于 2015 年 12 月 11-13 日在印度喀拉拉邦科塔亚姆圣雄甘地大学举行。