结果 1990 年至 2019 年,全球甲状腺癌的年龄标准化发病率 (ASIR) 有所增加,在两个研究时间点,女性的总体疾病负担均高于男性。ASIR 的男女比例从 1990 年的 0.41 增加到 2019 年的 0.51,而年龄标准化死亡率 (ASDR) 的比例从 0.60 增加到 0.82。模型预测,2020-30 年阿拉伯联合酋长国的 ASIR(估计年度百分比变化 (EAPC) = 4.19)和年龄标准化 DALY 率(EAPC = 4.36)将呈现最快的上升趋势,而圣基茨和尼维斯的 ASDR(EAPC = 2.29)将呈现最快的上升趋势。同时,预计在此期间各国的 ASDR 和年龄标准化 DALY 率的增长趋势都将增加。对 1990-2019 年和 2020-30 年全球甲状腺癌负担的相关性分析表明,在低 SDI 和中低 SDI 国家,ASIR 的增长与社会人口指数 (SDI) 之间存在显著的正相关性。
zqtian@xmu.edu.cn表面增强的拉曼光谱(SERS)的领域是在1970年代中期开始的,并于1990年代中期恢复。在1974年,依赖于电化学潜力的第一表面拉曼光谱是从Fleischmann,Hendra和McQuillan [1]的吡啶分子中观察到的。这一成就源于他们在拉曼光谱法应用于电化学方面的开创性工作。实际上,这是第一个SERS测量,尽管当时还没有被认为。van Duyne和Jeanmaire很快就仔细地设计了一种测量表面增强因子的程序,因此发现增强因子的阶段为10 5 -10 6。在旷日持久的审查过程之后,这大概是由于审稿人不愿相信表面增强的非正统概念,他们的论文最终于1977年发表[2]。独立地,克雷顿和阿尔布雷希特在同年发表了有关SERS的论文[3]。在1978年,Moskovits首先解释了表面等离子体对粗糙银电极对SERS增强的影响,并预测在覆盖有吸附剂的Ag和Cu胶体可能会发生相同的效果[4]。Creighton等人使用AG和AU胶体对该预测进行了实验验证,并且该效果被Van Duyne在1979年被列为表面增强的拉曼散射(SERS)[5]。在过去的50年中,SERS经过了曲折的途径,发展为强大的诊断技术[5,6]。我们可以从1970年代发现SER的伟大先驱和故事中学到什么?物理。我的演讲将主要通过讨论以下问题来提供历史但前瞻性的主题。为什么要挑战教科书以开设新的科学领域?1990年代,纳米科学(纳米驱动的SER)的sers研究是如何提高的?Will AI会在SERS的研究和应用中迎来一个新时代,并突破2020年代[7]的SERS(AI-DRIENS SERS)的开发瓶颈?参考文献[1] Fleischmann M,Hendra PJ,McQuillan AJ,吡啶的拉曼光谱吸附在银电极,化学。Lett。 (1974); 26,163-166 [2] Jeanmaire DL,Van Duyne RP,Surface Raman SpectroelectroChemistry:Part I Part I.杂环,芳香和脂肪族胺上吸附在阳极氧化银电极上,J。Electroanal。 化学。 (1977); 84,1-20 [3] Albrecht MG,Creighton JA,在银电极处吡啶的反常强烈的拉曼光谱,J。 am。 化学。 Soc。 (1977); 99,5215-5217 [4] Moskovits M,表面粗糙度和被吸附在金属上的分子的拉曼散射强度增强,J。Chem。 物理。 (1978); 69,4159-4161 [5] Ding Sy,Yi J,Li JF,Ren B,Wu Dy,Panneerselvam R,Tian ZQ,基于纳米结构的基于纳米结构的增强拉曼的拉曼光谱,用于材料的表面分析。 nat。 修订版 mater。 (2016); 1,16021-16037 [6] Panneerselvam R,Liu GK,Wang YH,Ding Sy,Li JF,Wu Dy,Tian ZQ,表面增强的拉曼光谱:瓶颈和未来的方向。 化学。 社区。 (2018); 54,10-25 [7] Yi J,You Em,Hu R,Graham D,Tian ZQ,ET。 al。 Soc。Lett。(1974); 26,163-166 [2] Jeanmaire DL,Van Duyne RP,Surface Raman SpectroelectroChemistry:Part I Part I.杂环,芳香和脂肪族胺上吸附在阳极氧化银电极上,J。Electroanal。化学。(1977); 84,1-20 [3] Albrecht MG,Creighton JA,在银电极处吡啶的反常强烈的拉曼光谱,J。am。化学。Soc。(1977); 99,5215-5217 [4] Moskovits M,表面粗糙度和被吸附在金属上的分子的拉曼散射强度增强,J。Chem。物理。(1978); 69,4159-4161 [5] Ding Sy,Yi J,Li JF,Ren B,Wu Dy,Panneerselvam R,Tian ZQ,基于纳米结构的基于纳米结构的增强拉曼的拉曼光谱,用于材料的表面分析。nat。修订版mater。(2016); 1,16021-16037 [6] Panneerselvam R,Liu GK,Wang YH,Ding Sy,Li JF,Wu Dy,Tian ZQ,表面增强的拉曼光谱:瓶颈和未来的方向。化学。社区。(2018); 54,10-25 [7] Yi J,You Em,Hu R,Graham D,Tian ZQ,ET。al。Soc。,半个世纪的表面增强拉曼光谱:回顾和透视,化学。Rev。 (2024);要出版。Rev。(2024);要出版。
引用出版版本的引用:Li,M,Li,Q,Q,Xu,M,Liu,B,Calatayud,DG,Wang,L,L,Hu,Hu,Z,James,TD&Mao,b 2021,'''aphiphiLic工程,用于使用有机污染剂的碳氧化碳纤维涂层的碳氧化物氧化物降低的石墨烯氧化物的倒置工程。184,pp。479-491。 https://doi.org/10.1016/j.carbon.2021.08.045
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
使用条款本文是从哈佛大学的Dash存储库下载的,并根据适用于其他已发布材料的条款和条件提供,如http:// nrs.harvard.edu/urn-3:hul.instrepos:dash.current.current.current.terms.terms.terms.terms.terms.terms-use-useuse#laa
摘要:血清尿酸盐(SU)是糖尿病发生率的独立预测因子。在当前的糖尿病治疗方案中,对高尿酸血症(HU)在疾病控制和预防中的重要性不足。总结了SU对β细胞功能,胰岛素抵抗和慢性糖尿病并发症的影响的最新知识,并评估了HU和HU和糖尿病患者的管理,我们搜索了Medline PubMed数据库,并包括285篇期刊文章。在此综述中建立了禁食等离子体葡萄糖和SU水平之间的倒U形关系。SU水平升高可能会增强慢性糖尿病并发症的发展,包括大血管和微血管功能障碍。饮食和运动是HU和糖尿病管理所需的生活方式改变的重要组成部分。葡萄糖和降低药物的选择和组合应与改善,至少不恶化,糖尿病和HU的原理进行。医疗人工智能技术和监测系统可以通过数字医疗保健帮助提高HU和糖尿病的长期管理的有效性。这项研究对糖尿病和HU的临床管理进行了科学和可靠的基础,并为这项研究提供了科学而可靠的基础。关键词:糖尿病,高尿酸血症,U形关系,较低的尿酸盐治疗,管理
工程高压水溶液电池(AAIBS)Erhai Hu,Bei-er Jia,Qiang Zhu,Qiang Zhu,Jianwei Xu,Xian Jun Loh,Jian Jun Chen,Jian Chen*,Hongge Pan,Qingyu Yan* E. Hu* E. Hu,Q. Alexyan@ntu.edu.sg B.-E. Nanyang Technological University,639798,新加坡Q. Q. 627833,新加坡
元认知是指在自己的认知过程中自我反射的能力。准确地建立自己的形象是人类活动行为调节(1)的关键(1),并直接为决策,解决问题和一般福祉提供了信息(2,3)。元认知准确性的结构衡量了人们对认知绩效的判断与实际任务绩效之间的一致性,这对心理学研究产生了重大兴趣。良好的元认知准确性,在预测和实际表现之间具有密切的对应关系,表明了良好的自我评估能力。元认知准确性的度量是由任务绩效得出的,已被证明是个人元认知过程功能完整性的关键指标(4)。
r0040_c0010提交日期到NCA的日期,当该企业发送到NCA时。格式dd/mm/yyyy。R0050_C0010提交日期至NLCS PG日期,当模板通过NCA格式DD/MM/YYYY R0060_C0010授权国家授权国家授权国家的国家发送了模板的日期。从封闭列表中选择国家: - AT - 奥地利 - BE - BE - BE - BE -BG - 保加利亚 - HR - 克罗地亚 - 克罗地亚 - CZ - 捷克共和国-DK - 丹麦 - 丹麦 - EE - EE - EE - EE - EE - FI - FI - FI - FI -FI -FIR - 法国 - 德国 - 德国 - 德国 - 德国 - El - el -el – el – el – hu - hu - hu - hu - hu - hu - iceland - Iceland - Iceland - Iceland - Iceland - Iceland - Iceland - Icean- ICU- ICU - ICU- IS -IE- ITH - IS -IS -IS -IS -IS -lt- lt- lt - Liechtenstein - LV – Latvia - LU – Luxembourg - MT – Malta - NL – Netherlands - NO – Norway - PL – Poland - PT – Portugal - RO – Romania - SK – Slovakia - SL – Slovenia - ES – Spain - SE – Sweden - UK – United Kingdom - XX – Other (Select this option if none of the above countries is suitable.在Cell R0060_C0020中提供评论)R0060_C0020其他评论机会
式中,T d 表示信号延迟,K为系数,DK表示介质材料的介电常数。可以看出,材料的介电常数越低,信号延迟越低,信号保真度越高。因此,在第五代通信技术深入发展的背景下,使用低k材料成为降低信号滞后时间的有效途径。一般在微电子领域常用的介质材料都是介电常数相对较低的材料。低介电材料是指介电常数高于空气(1)而低于二氧化硅(3.9)的材料,其值范围在1~3.9之间。低介电聚合物材料因具有易加工、热稳定性、电绝缘性等优点,被广泛应用于电子电工、电子集成、印刷电路板、通讯材料等领域。目前已知聚四氟乙烯(PTFE)[6, 7]、液晶聚合物(LCP)[8 – 10]、聚酰亚胺(PI)[11 – 14]等已广泛应用于电路板基材,环氧树脂、氰酸酯树脂等也作为优良的胶粘剂广泛用于电子设备的封装材料[15 – 17]。图1为环氧树脂、氰酸酯树脂和聚四氟乙烯的介电性能。