最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
• 来自多个无线设备的数据:同时从一个或多个无线 CPS 设备收集数据 • 客户列表:创建和保存客户历史信息 • 工作清单:创建和保留工作提醒 • 工作追踪器:创建和保留已执行服务的记录 • 地理位置:记录和存储工作完成的位置 • 时间戳:记录和存储时间和日期 • 监测读数:远程 • 共享/发送数据:方便地通过电子邮件发送或保存数据 • 可选语言:从不同的语言中选择
房屋飞行,穆斯卡·家族(Musca Housea),是许多病原体的机械载体,对人类和动物的健康构成了重大风险。二十多年前,发现了穆斯卡家族唾液腺肥大病毒(MDSGHV),从而感染了男性和女性苍蝇,并破坏了交配和生殖过程。MDSGHV可以感染各种组织,但其主要复制位点是苍蝇唾液腺。众所周知,节肢动物唾液腺不仅在获取食物,而且在传播病原体中起着重要作用。因此,了解向量唾液腺的组成以及载体与病原体成分之间的相互作用对于制定未来的控制策略至关重要。为此,我们对感染和未感染的房屋蝇的唾液腺进行了全面的RNA测序。我们的分析总共确定了6,410个推定的序列,其中6,309个源自M. tourplea,101个来自MDSGHV,分为25个官能团。此外,受感染和未感染的唾液腺之间的差异表达分析显示,有2,852个显着调节的转录本,突出了MDSGHV感染触发的深刻转录变化。总的来说,这些发现不仅加深了我们对家长唾液腺组成的理解,而且还提供了对病毒媒介相互作用的宝贵见解,这可以作为理解其他医学相关相互作用的模型。
RD-K344BMU是用于开发目的的参考电池管理单元(BMU)。这是快速原型制作高压电池管理系统(HVBMS)硬件和软件的理想选择。该板包含多个NXP设备,包括S32K344,FS26,MC33665A,HB2000,TJA1145A,PCA2131,NBP8和MC40XS6500。
在2024年,全球经济的周期性失衡逐渐缓解,并得到了主要经济体经济活动的改善。这些趋势以及限制性的货币政策,导致全球通货膨胀率降低。然而,仍然存在很大的下行风险,包括许多地区的政治不确定性和持续服务的提升。美国经济表现出了韧性,GDP在2024年增长了2.8%,这是由于消费者支出,出口,投资和联邦政府支出的增加所致1。相比之下,欧洲经济体的增长仍然柔和。与去年同期2相比,英国的GDP在第三季度增长了1.0%。2024年的GDP增长率在欧元区为0.7%,欧盟3为0.8%。新兴亚洲在2024年的增长受到对半导体和电子产品的强烈需求,这是由于对人工智能的大量投资所推动的。然而,该地区的两个最大经济体显而易见持续的放缓。
需求减少计划,客户同意他们的电力公司将通过电力储蓄措施来维持所有能力权利的所有权,这是指与任何能源效率相关的需求减少和降低了公司提供激励措施的峰值需求措施。您的电力公司将在适当的情况下汇总这些能源效率需求需求需求的属性,并将收益用于降低客户的计划成本。
CAN SIC XL物理培养基附件(PMA)Sublayer在ISO 11898-2:2024中是国际标准化的。最初,在CIA 601-4(SIC)和CIA 610-3(快速模式)文档中指定了CAN SIC XL收发器的要求,该文档已提交给ISO。NT156收发器的原型已通过CAN SIC XL收发器从Infineon,NXP和Texas Instruments在CIA CAIS CAN CAN CAN CAN CAN CAN XL Plugfest进行了成功测试。兼容性和互操作性也由沃尔芬布特尔(德国)的独立测试室C&S组测试。汽车EMC要求(IEC 62228-3)已由伊比(Ibee)在Zwickau(德国)证明。博世在去年慕尼黑(德国)的Electronica TradeShow上推出了CAN SIC XL收发器。样品将在2025年2月2日提供。根据ISO 26262(功能安全)开发芯片。根据初步数据表,NT156在隐性总线状态10 mA中以正常模式消耗,在占主导地位的总线状态54 mA中。在待机模式下,电流消耗为2 µA。用50 µs指定从备用模式到正常模式的过渡。收发器的目的是从-40°C到+150°C的连接温度。在+170°C和+200°C之间,芯片关闭,并在+150°C下释放关闭。关闭连接温度滞后是20K。最小TXD主超时为0.8 ms。芯片在V CC和V IO引脚处具有欠压检测。
2.3。用户承认(i)参考设计是在实验室条件下创建的,除了参考设计中可以明确描述的任何其他测试,(ii)与参考设计相关的参考设计中的任何信息,或者使用参考设计或评估套件中包含的第三方组件(第三方产品”(“第三方产品”)不使用任何第三方或任何第三方产品或任何第三方产品或任何第三方产品,或者使用任何第三方产品,或任何第三方产品,或任何第三方的产品,服务可能需要根据专利或其他知识产权获得第三方的许可,并且(iii)Vishay可以对其各自的产品和服务,参考设计或评估套件进行更正,增强,改进以及其他更改,并停止任何产品或服务。vishay没有义务,也没有对参考设计或评估套件中包含的第三方产品的索赔,陈述,保证或保证。
建筑物中的加热,通风和空调(HVAC)系统是全球运营CO 2排放的主要来源,这主要是由于它们的高能源需求。传统控制器在管理建筑能源使用方面显示出有效性。但是,他们要么难以处理复杂的环境,要么无法将经验中的学习纳入他们的决策过程,从而提高了计算要求。这些缺点的潜在解决方案是增强学习(RL),可以通过其多功能和基于学习的特征来克服它们。在这种情况下,本研究介绍了详尽的文献综述,重点是自2019年以来发表的研究,该研究将RL应用于HVAC系统控制。它桥接了理论概念和文献发现,以确定每个问题的合适算法并找到差距。发现,在实际建筑物中的RL部署有限(占研究的23%),常见的培训方法揭示了基本的技术问题,可以防止其安全使用:外在状态组件中缺乏多元化(例如,占用时间表,电价,电价和天气)在每种情节中在训练中在训练中以多样性或意外改变现实生活的方式收到的代理人在训练中接收。这需要重复的,广泛的再培训,然后在计算上很昂贵。未来的研究应专注于通过解决先前的问题将RL应用于真实建筑物。进一步的研究应探讨这个方向。META-RL作为概括功能的新兴解决方案而出现,因为它可以在各种任务上训练代理,从而使代理更适应性并降低了计算成本。
1。报告问题:联系您的授权经销商或Esener服务中心。2。提交电池:在授权的Esener服务中心或授权的Esener技术人员中安排电池检查。交货和收款成本是客户的责任。3。提供文档:包括税收发票,电池序列号和有效的安装合规证书。4。评估:服务中心或技术人员将评估电池并验证索赔。可以要求提供其他站点信息或访问。5。维修或更换:如果索赔已验证,将进行维修或维修。任何更换的零件都成为Esener的财产。6。邮政服务:修理或更换后,电池将退还给客户。