当 HV 脚施加大于 40V 的电压时,内部高压电流源 对 V CC 脚外接的电容充电。为防止 V CC 在启动过程中短 路引起的功率损耗而使 IC 过热损坏,当 V CC 电压低于 1V 时,高压电流源的充电电流被限制为 I HV1 ( 1mA )。 当 V CC 大于 1V 后,高压电流源的充电电流变为 4mA_min , V CC 电压会迅速上升。当 V CC 超过启动水平 V CC_ON 时,高压启动电流源关闭。同时, UVLO 置高有 效, IC 内部电路开始工作。
I HV1 (1mA) 。当 V CC 大于 V CC_SCP1 后,高压电流源的 充电电流为 I HV2 (55mA) , V CC 电压会迅速上升。当 V CC 电压 超过 V CC_ON(18.5V) 时,高压启动电流源关闭。同 时, UVLO 置高有效, IC 内部电路开始工作,系统开 始检测输入是否超过 Brown-in 阈值 V BI ,如果没有超 过,则 V CC 电压在 V CC_ON ( 18.5V ) 和 V CC_OFF ( 12.5V ) 之间来回充放电;如果检测到输入超过 V BI ,则开启高 压启动电流源,直到 V CC 电压达到 V CC_SYSON ( 21V ) , IC 开始输出驱动。
摘要:采用激光定向能量沉积 (L-DED) 技术制备了接近全密度且无裂纹的 AISI H13 热作工具钢。研究了两种不同的热处理方案,即从成品 (AB) 状态直接回火 (ABT) 和回火前系统化和淬火 (QT),并报告了它们对 L-DED H13 的微观结构、硬度、断裂韧性 (K app ) 和回火抗力的影响。为此,确定了最佳奥氏体化制度,并制作了回火曲线。在相似的硬度水平 (500 HV1) 下,QT 部件的 K app (89 MPa √ m) 高于 ABT (70 MPa √ m)。然而,这两个部件获得的断裂韧性值与锻造 H13 相当。考虑到高温奥氏体化过程中发生的微观结构均质化和再结晶,讨论了 QT 对应部件中稍大的 K app。 ABT 材料在 600 ◦ C 下的回火抗力与 QT 材料相比略有改善,但对于更长的保温时间(长达 40 小时)和更高的温度(650 ◦ C),ABT 表现出优异的耐热软化性能,这是由于其马氏体亚结构(即块尺寸)更细小、二次碳化物尺寸更细小以及二次 V(C,N)碳化物的体积分数更大。
由于生产率高,增材制造 (AM),尤其是使用激光和金属粉末的定向能量沉积 (DED-LB/M) 对于制造具有集成功能的工具很有吸引力。本研究致力于 DED-LB/M 制造实验性马氏体时效工具钢、使用先进电子显微镜表征构建微观结构以及评估硬度性能。观察到最终构建的高可打印性和低孔隙率,对于使用 600 W 和 800 W 制造的样品,相对密度不低于 99.5%,但构建的微观结构和性能沿高度呈梯度。观察到取决于制造参数的特征硬度分布和微观结构。制造的马氏体时效钢样品的顶层具有马氏体结构,沉淀物可能在凝固过程中形成。因此,顶层在奥氏体化等温线的深度处较软。在内部区域测量到更高的硬度,这是制造材料在逐层制造过程中进行原位热处理的结果。制造过程中的热循环导致内部区域产生沉淀硬化效应。扫描和透射电子显微镜证实,在顶部和内部区域的原始材料中形成了薄膜状和圆形颗粒。然而,仅在内部区域观察到准晶纳米级 R ' 相沉淀物。制造过程中由于原位热处理而沉淀的 R ' 相的形成是内部区域测得的硬度较高 (440 – 450 HV1) 的原因。
标题:开发针对孤儿癌或神经发育障碍的离子通道和转运蛋白上新分子开发和电生理验证的微型技术。pi和实验室的名称:Marco Lolicato and Elements S.R.L.研究主题/主题:生物物理学,工程,化学和分子生物学。主要摘要:博士生将通过实验室活动,临时研讨会和参与国会,转化医学的互补领域的技能,特别关注跨膜治疗目标的分子和功能方面,例如离子渠道和转移剂。通过与公司元素S.R.L.的合作,学生还将发展对微电子和电生理学的深入了解,这将使他在行业和学术领域的就业市场中具有竞争力。实验室主要用于涉及肿瘤病理和神经发育过程的离子通道和转运蛋白的生物物理学。实验室的目的是鉴定HV1通道在乳腺癌转移中的作用(1); (2)KCC2通道相互作用组的分子机制; (3)二价VDAC1-己激酶复合物的分子结构。在实验室中,我们能够为结构和功能研究净化足够数量的蛋白质靶标,并且我们正在与国际公司积极合作开发新的抗癌分子。学生的进度将由实验室经理和工业导师不断监控。博士生将通过学习分子生物学和生化技术来进入这种情况,这将使他能够产生感兴趣的蛋白质,并获取必要的技能,以独立和无监督的电生理测量测量,以评估分子对纯化蛋白质的影响。博士生将学会评估蛋白质制备的质量并分析和解释电生理学数据。实验室进度报告将每周组织,并每月与公司经理举行虚拟会议。博士生还将在实验室和高通量电生理系统组成部分的电子设备中获得“故障排除”的经验。该项目具有很高的创新性和竞争性,因为它将实验室研究与用于电生理测量的微电源成分的开发相结合。实际上,目标是通过彻底筛选已经可用的化合物的商业分子库和库来鉴定抗肿瘤和神经发育分子,但已批准用于治疗不同的病理学(药物重新培养 /重新定位)。这些类型的筛选需要大量的实验和电生理测量。但是,由于Elements Company开发的工具并由博士生优化 /开发的工具,可以快速测试每天数十个分子。技术:电生理学,蛋白质表达和纯化,细胞生物学测定,计算方法(对接,分子动力学,蛋白质工程)。这种方法论方法的发展不仅对实验室和帕维亚大学都有用,而且最重要的是,对于国家和国际科学界而言,这是有用的。
