储能系统 (ESS) 可以提高可再生能源占比较高的电力系统的服务可靠性。本文介绍了一种可以将 ESS 直接集成到 HVDC 系统中的转换器拓扑。该拓扑由一个储能子模块 (ES-SM) 分支和一个电感器组成。ES-SM 基于半桥,通过直流/直流转换器连接到超级电容器或电池。该拓扑可扩展到不同的电压水平,并且由于储能元件分布在所有子模块中,因此它提供了高度的冗余。在这项工作中,转换器拓扑使用平均模型建模,其控制旨在调节注入的直流功率和 ES-SM 的能量。还提供了拓扑主要元素的初步尺寸。模拟表明,ES-SM 既可以从 HVDC 系统注入和吸收功率,同时保持 ES-SM 电容器中的所需能量。
本论文讨论的另一个重要主题是 IGBT 模块的状态监测。为此,开发了一个功率循环测试台。选择 𝑉 𝐶𝐸(𝑜𝑛) 作为跟踪功率器件在整个循环测试过程中退化状态演变的参数。因此,构思并开发了一个在线 𝑉 𝐶𝐸(𝑜𝑛) 测量板。为了获得有关所应用循环协议的更多相关见解,开发了一种在线估计 IGBT 器件结温的策略,该策略基于卡尔曼滤波器的使用。该策略还能够通过分析热敏电参数来估计 IGBT 健康状态的退化程度。
最近的研究表明,储能系统 (ESS) 可以分布在模块化多级转换器 (MMC) 中,以增强高压直流 (HVDC) 换流站,从而提供辅助服务。在这种情况下,DC-DC 转换器必须将储能元件连接到子模块 (SM) 电容器。然而,由于 MMC 的工作原理复杂,转换器拓扑的选择及其控制并不简单。本文提出了一种合适的接口转换器和控制策略来解决这些问题。特别强调了转换器的建模,以突出 SM 内部的所有交互并简化控制器的设计。最后,缩小的原型验证了所提解决方案的有效性。
Reza Janbazi Ghadi 1、Majid Mehrasa 2*、Erfan Azimi 1、M. Ebrahim Adabi 3、Seddik Bacha 4 1:伊朗矿山和采矿业发展和革新组织(IMIDRO) 2:意大利的里雅斯特大学工程与建筑系,的里雅斯特 3:荷兰代尔夫特理工大学电气可持续能源系智能电网。 4:格勒诺布尔阿尔卑斯大学,CNRS,格勒诺布尔 INP(格勒诺布尔阿尔卑斯大学工程学院),G2Elab,38000 格勒诺布尔,法国
国家已经表明,公开致力于标准化传输技术,以促进更具成本效益的项目,并为将来的相互联系的离岸网格提供选择性。国家可再生能源实验室的大西洋海上风传输研究1强调了网络高压直流电流(HVDC)传输网格,这是最具成本效益的长期解决方案。其他人倡导交替流动(AC)“网格就绪”系统来解决近期机会。新英格兰州,马里兰州,新泽西州和纽约都需要或表示对任何一种类型的努力表示兴趣,以协调传输设施的规划,反映出更广泛的全球趋势朝着全面的传输策略迈进,尤其是在欧洲的长期计划和大规模的承诺中,以购买必要的设备。
Larsson M 、Törnkvist C、Borg K、Arevalo L 、Wu D。“球面气隙中的非连续正先导传播”。电气工程讲义,丛书,Springer,第 599 卷,第 1205 – 1214 页 https://doi.org/10.1007/978-3-030-31680-8_115 。ISBN 978-3-030-31679-2。2019
摘要:本文旨在评估从澳大利亚大型太阳能光伏 (PV) 发电厂通过长距离海底高压直流 (HVDC) 电缆进口到新加坡的电力的生命周期温室气体 (GHG) 排放。开发了一个成本优化模型来估算系统组件的容量。建立了一个全面的生命周期评估模型来估算这些组件的制造和使用排放量。我们的评估表明,要满足新加坡五分之一的电力需求,需要一个装机容量为 13 GW PV、17 GWh 电池存储和 3.2 GW 海底电缆的系统。这种系统的生命周期温室气体排放量估计为 110 gCO 2 eq/kWh,其中大部分来自太阳能光伏板的制造。电缆制造对温室气体排放的贡献并不大。通过改变满负荷时间和电缆长度,评估发现,距离新加坡较近的站点可能以相同/更低的碳足迹和更低的成本提供相同的能源,尽管日照量低于澳大利亚。但是,这些站点可能比澳大利亚的沙漠造成更大的土地使用变化排放量,从而抵消了较短高压直流电缆的优势。
摘要:高压直流(HVDC)输电被称为绿色能源传输技术,由于其高功率传输能力和较低的功率损耗,近年来已成为高压交流(HVAC)的一种有吸引力的替代方案。近年来,复合绝缘子在直流(DC)输电线路上的使用迅速增长,因为它们具有高疏水性并且比传统陶瓷绝缘子在污染环境中表现更好。在直流线路上运行期间,由于单向电场的作用,绝缘子容易积聚更多的污染物。潮湿条件下的污染物会使漏电流在绝缘子表面流动。聚合物绝缘子本质上是有机物,在电和环境应力的共同作用下容易老化。为了充分了解直流复合绝缘子的长期老化性能,有必要进行详细调查。为此,本文批判性地总结了世界各地在现场和实验室条件下复合绝缘子老化性能的经验。
Labrador-Island Link(LIL)从拉布拉多的Muskrat到纽芬兰的士兵池塘的HVDC链接±350 KV,900 MW Bipole LCC计划,OHL/Cable路线长度:1100/35公里:1100/35公里现状:现有状态:在建设中。计划在2017/2018海上链接从纽芬兰的底部布鲁克到新斯科舍省的Woodbine的HVDC链接±200 KV,500 MW VSC计划,OHL/Cable路线长度:470/170/170 km构建状态:施工:470/170 km施工。计划在2017年之前的服务