储能系统 (ESS) 可以提高可再生能源占比较高的电力系统的服务可靠性。本文介绍了一种可以将 ESS 直接集成到 HVDC 系统中的转换器拓扑。该拓扑由一个储能子模块 (ES-SM) 分支和一个电感器组成。ES-SM 基于半桥,通过直流/直流转换器连接到超级电容器或电池。该拓扑可扩展到不同的电压水平,并且由于储能元件分布在所有子模块中,因此它提供了高度的冗余。在这项工作中,转换器拓扑使用平均模型建模,其控制旨在调节注入的直流功率和 ES-SM 的能量。还提供了拓扑主要元素的初步尺寸。模拟表明,ES-SM 既可以从 HVDC 系统注入和吸收功率,同时保持 ES-SM 电容器中的所需能量。
摘要:高压直流(HVDC)输电被称为绿色能源传输技术,由于其高功率传输能力和较低的功率损耗,近年来已成为高压交流(HVAC)的一种有吸引力的替代方案。近年来,复合绝缘子在直流(DC)输电线路上的使用迅速增长,因为它们具有高疏水性并且比传统陶瓷绝缘子在污染环境中表现更好。在直流线路上运行期间,由于单向电场的作用,绝缘子容易积聚更多的污染物。潮湿条件下的污染物会使漏电流在绝缘子表面流动。聚合物绝缘子本质上是有机物,在电和环境应力的共同作用下容易老化。为了充分了解直流复合绝缘子的长期老化性能,有必要进行详细调查。为此,本文批判性地总结了世界各地在现场和实验室条件下复合绝缘子老化性能的经验。
这项工作是由美国能源公司联盟(Alliance for of Contery No.DE-AC36-08GO28308。由美国能源部能源效率办公室和可再生能源风能技术办公室和美国电力部电力局提供的资金,以支持电网现代化倡议。此处表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了不可限制的,有偿的,不可撤销的,全球范围内的许可,以出版或复制这项工作的已发表形式,或允许其他人这样做,以实现美国政府的目的。
摘要:本文旨在评估从澳大利亚大型太阳能光伏 (PV) 发电厂通过长距离海底高压直流 (HVDC) 电缆进口到新加坡的电力的生命周期温室气体 (GHG) 排放。开发了一个成本优化模型来估算系统组件的容量。建立了一个全面的生命周期评估模型来估算这些组件的制造和使用排放量。我们的评估表明,要满足新加坡五分之一的电力需求,需要一个装机容量为 13 GW PV、17 GWh 电池存储和 3.2 GW 海底电缆的系统。这种系统的生命周期温室气体排放量估计为 110 gCO 2 eq/kWh,其中大部分来自太阳能光伏板的制造。电缆制造对温室气体排放的贡献并不大。通过改变满负荷时间和电缆长度,评估发现,距离新加坡较近的站点可能以相同/更低的碳足迹和更低的成本提供相同的能源,尽管日照量低于澳大利亚。但是,这些站点可能比澳大利亚的沙漠造成更大的土地使用变化排放量,从而抵消了较短高压直流电缆的优势。
HVDC Light ® Valve Hall 堪培拉/苏黎世,2024 年 5 月 23 日——日立能源已被 Marinus Link Pty Ltd (MLPL) 选中,为具有全国意义的高压直流 (HVDC) 项目提供电力,该项目将增强澳大利亚大陆与塔斯马尼亚电网之间的连接。约 345 公里长的电缆路线 HVDC 系统将使维多利亚州和塔斯马尼亚州之间的可再生能源双向流动。Marinus Link 首次在澳大利亚使用先进的转换器技术在链路的两端稳定和整合越来越多的可再生能源到电网中。该连接将使塔斯马尼亚州能够进口维多利亚州生产的过剩太阳能和风能,同时保留其水力发电并储存多余的能源。清洁水电可以在最需要的时候为大陆电网供电,充当国家的大电池。此外,它还加强了澳大利亚电网的供电安全性,该电网的电力越来越多地来自可持续能源。日立能源将为其 HVDC Light® 电压源换流器 (VSC) 站供电
在 2021-2022 年输电计划中,ISO 批准了纽瓦克 - NRS 高压直流 (HVDC) 项目和梅特卡夫 - 圣何塞 B HVDC 项目,以增强该地区的输电系统,从而长期可靠地满足预测负荷。在董事会批准 2021-2022 年输电计划后,ISO 的竞争性招标程序选择了 LS Power Grid California LLC (LSPGC) 作为上述两个 HVDC 项目的项目发起人。虽然批准仅针对两个点对点 HVDC 项目,但长期愿景是通过 HVDC 电缆连接两个 HVDC 项目并形成多端 HVDC 方案,以在长期提供足够的容量。图 ES-1 提供了该地区长期设想的最终多端 HVDC 方案的示意图。HVDC 项目及其最终多端配置的所需额定值和其他参数在功能规范中有详细说明。1
Power Supplies • 1400W Titanium 277 VAC or 336 HVDC, hot swap with full redundant • 1800W Titanium 200—240 HLAC or 240 HVDC, hot swap with full redundant • 1400W Platinum 100—240 VAC or 240 HVDC, hot swap with full redundant • 1100W Titanium 100—240 VAC or 240 HVDC, hot swap with full redundant • 1100W -(48—60) VDC, hot swap with full redundancy • 800W -(48—60) VDC, hot swap with full redundancy • 800W Platinum 100—240 VAC or 240 HVDC, hot swap with full redundant • 700 W Titanium 200—240 HLAC or 240 HVDC, hot swap with full redundant
高压直流电流(HVDC)电缆更换和容量项目是升级HVDC Inter-Island变速箱链路(HVDC链路),并替换连接到北岛和新西兰南岛的海底电缆。该项目旨在在未来40年内提供适当尺寸,弹性和可靠的HVDC链接。库克海峡电缆对于新西兰的电力系统至关重要。在典型的一年中,现有的HVDC链接可从南岛发电机提供15%的北岛电力,但是在某些时候,这些电缆可提供北岛的大约30%的电力。
Powerlink 还考虑将高压直流 (HVDC) 技术用于超级电网传输主干网。HVDC 技术不断发展,目前已应用于海底和长距离点对点连接。HVDC 电压源转换器 (VSC) 技术还提供了一系列有益的功能,这些功能得益于位于转换器终端站的控制和电力电子设备的先进进步。全球海上风电场和海底互连器对 HVDC 的需求很高,随着其在世界各地的部署,技术和成本将受到密切监控。HVDC 的一个缺点是转换器站成本高,中间终端站的技术复杂。
3.17 HVDC电缆路线从Seaham的平均低水标记开始,在那里它与海洋计划重叠。在拟议的登陆点上,它从跨潮间带的平均低水位延伸到过渡关节坑。从过渡关节坑中,HVDC电缆路线最初朝北西风方向驶过约1.4公里,越过B1287和达勒姆海岸铁路线。随后,HVDC电缆路线与B1285越过A1018回旋处,并以西南方向朝向默顿·摩尔(Murton Moor)。在默顿(Murton)摩尔(Murton Moor),HVDC电缆路线(HVDC Cable)路线向东南行驶,并穿过国家周期路线(NCR)1,然后向东向东朝霍桑坑的转换器站。