摘要随着半导体设备的大小减小,结构和材料变得越来越复杂,因此制造这些设备变得越来越困难。IC研发(R&D)的复杂性和大容量制造(HVM)的规模大大增加了达到最终产量所需的成本和时间。芯片制造商,设备制造商和软件公司正在广泛的应用程序中探索和部署机器学习(ML)技术,包括流程开发,生产维护,计量和收益率改善,以解决这些扩展问题。拥有十多年的专业知识为半导体制造部署ML技术,LAM Research已开发了多种智能工具和ML解决方案,以优化半导体制造中的质量,效率以及生产力以及加速创新。在本文中,LAM的两个智能工具 - Semulator3D®和设备智能®DATAANALYZER(EI-DA) - 介绍了用于演示在R&D和HVM期间如何使用LAM的先进技术来有效地生产最先进的微芯片。
逆变器通过屏蔽的4极电缆(CAT5及更高)通过Modbus RTU(RS485)与电池通信。必须始终将终端电阻放在环的末端。使用BYD电池盒高级HVS/ HVM,这可以直接在存储系统上使用DIP开关。为了确保无错误的功能,逆变器和电池必须始终具有最新的软件更新。可以通过fronius solar.web激活逆变器的软件更新。
在本文中,我们考虑了对于 D2W 键合,封装集成商可以使用几种键合技术,从焊球到底部填充 TCB 和混合键合。讨论了各种特定的应用差距和技术载体,以强调 HVM 的采用目前还不是交钥匙工程,而与一直占主导地位的成熟引线键合相比,该技术似乎非常年轻。由于特定外形封装尺寸或设备应用对性能的要求很高,代工封装公司或使用内部封装工艺的大型半导体制造商,因此采用年轻的技术需要仔细规划,以解决潜在的差距和障碍,以实现具有成本效益、高产量和可扩展的技术。I/O 密度将受到关键因素的限制,例如键合对准精度、焊盘或凸块尺寸和金属界面、晶圆或载体晶圆形状/翘曲、如果采用了 CMP 技术,界面均匀性、退火和 DT 限制、底部填充特性、凸块金属选择、应力诱导裂纹形成;必须谨慎处理此处未考虑的其他差距和风险,以确保
1.引言在摩尔定律的驱动下,半个多世纪以来半导体产业一直致力于缩小特征尺寸。最近,13.5 纳米极紫外光刻 (EUVL) 技术已经应用于 5 纳米节点 HVM。由于目前 0.33 NA 的限制,EUVL 无法分辨小于 13 纳米线/线距的特征。与 EUVL 相比,定向自组装 (DSA) 表现出高达 5 纳米 L/S 的极精细分辨率,被视为亚 10 纳米甚至亚 5 纳米特征尺寸的潜在图案化技术[1-9]。最近,含金属 EUV 光刻胶已被开发用于提高超薄 EUV 光刻胶膜的抗蚀刻性[10,11]。最近,我们的研究小组报道了一系列具有氟化嵌段的 BCP,经过中等温度下 1 分钟的热退火后迅速形成亚 5 纳米域[12,13]。我们假设氟化侧链对超精细分辨率和图案化速度起着关键作用。然而,由于薄膜超薄,抗蚀刻性是 5 纳米以下 DSA 材料的主要问题。
此外,周二还将举行为期半天的异构集成路线图研讨会,由 Bill Chen 和 Bill Bottoms 主持。ECTC 还将邀请行业专家举办 7 场特别会议,讨论几个重要且新兴的主题领域。周二将安排 5 场特别会议,每场 90 分钟。5 月 31 日星期二上午 8:30,Chukwudi Okoro 和 Benson Chan 将主持“MicroLED 显示技术:大批量制造 (HVM) 进展与挑战”会议,随后 Amr Helmy 将于上午 10:30 主持特别会议,主题为“IEEE EPS 异构集成路线图的选定主题”。周二下午 1:30,Jan Vardaman 将就“从芯片到共封装光学器件”这一主题发表特别演讲,随后 Kuldip Johal 和 Bora Baloglu 将在下午 3:30 发表特别演讲,题为“IC 基板技术将如何发展以实现下一代异构集成方案以实现高性能应用?”周二晚上,Kitty Pearsall 和 Chris Riso 将共同主持 EPS 总裁 ECTC 小组会议,主题为“最先进的异构集成封装方案”。
euv抗材料在启用高量制造(HVM)的高级光刻技术方面起着至关重要的作用,该技术针对低于5 nm的节点。在这项研究中,我们报告了对未来高NA EUV光刻术的可用EUV光孔师的广泛性能表征。,我们使用Paul Scherrer Institute和ASML合作的框架内使用EUV干扰光源工具(SLS)在瑞士光源(SLS)上调查了各种抵抗的性能。本文强调了我们在2023年观察到的主要改进,并提出了最佳性能的6种不同供应商的半票(HP)14及以下。本研究中考虑的重要性能特征是分辨率或HP,剂量到大小(DTS)和线宽度粗糙度(LWR)。为了评估抵抗的整体绩效,我们使用了z因子。我们研究了化学放大的抵抗(CAR)和非车材料。来自两个供应商的汽车达到了一个低至11 nm的分辨率,而多触发器抵抗(MTR)达到了13 nm的分辨率。新的金属有机抗(MOR)的分辨率低至11 nm。MTR和一辆汽车材料达到了迄今为止最低的Z因子。此外,我们研究了卧式对MOR性能的影响,并将新MOR的性能与前身进行了比较。,我们最终讨论了近年来抵抗性能的总体进展。我们观察到了几个抗性平台的稳定改善,这对于全球EUV抗性向高NA EUVL的发展令人鼓舞。
EUV 光刻胶材料对于实现下一代光刻技术至关重要,该技术旨在实现 5 nm 以下节点的大批量制造 (HVM)。在本研究中,我们报告了 EUV 光刻胶的广泛性能表征,用于未来的高 NA EUV 光刻。我们在 Paul Scherrer 研究所和 ASML 合作的框架内,使用瑞士光源 (SLS) 的 EUV 干涉光刻工具研究了各种光刻胶的性能。本文介绍了 2022 年下半年开展的工作的主要成果。本研究考虑的重要性能特征是分辨率或半节距 (HP)、剂量与尺寸比 (DtS) 和线宽粗糙度 (LWR)。为了评估光刻胶的整体性能,我们使用了 Z 因子。我们研究了化学放大光刻胶 (CAR) 和非 CAR 材料。两家供应商的 CAR 实现了低至 11 nm 半节距的分辨率,而多触发光刻胶 (MTR) 达到了 13 nm 的分辨率。相比之下,MTR 由于其高灵敏度而表现出更好的 Z 因子值。此外,我们研究了底层对金属有机光刻胶 (MOR) 性能的影响。最后,我们讨论了近年来光刻胶性能的总体进展。我们观察到多个光刻胶平台的稳步改进,这对全球 EUV 光刻胶向高 NA EUVL 的发展是令人鼓舞的。
1 妇科肿瘤学系,乌得勒支大学医学中心乌得勒支癌症中心,乌得勒支大学,3584 CX 乌得勒支,荷兰;JFRoze@umcutrecht.nl(JR);JWGroeneweg-11@umcutrecht.nl(JG);rene.hmverheijen@gmail.com(RV);G.Monroe@umcutrecht.nl(GM)2 遗传学系,分子医学中心,乌得勒支大学医学中心,Oncode 研究所,乌得勒支,3584 CX 乌得勒支,荷兰;e.sendinogarvi@uu.nl(ESG);E.Stelloo@umcutrecht.nl(ES);CSStangl-2@umcutrecht.nl(CS);ferdinando.sereno@studenti.unipd.it(FS); KJDuran@umcutrecht.nl (KD);G.vanHaaften@umcutrecht.nl (GvH) 3 格罗宁根大学医学中心妇产科,格罗宁根大学,9713 GZ 格罗宁根,荷兰;stpaijens@umcg.nl (SP);hwnijman@umcg.nl (HN) 4 阿姆斯特丹妇科肿瘤中心妇科肿瘤科,阿姆斯特丹大学医学中心,1105 AZ 阿姆斯特丹,荷兰;hsvanmeurs@amsterdamumc.nl (HvM);lrvanlonkhuijzen@amsterdamumc.nl (LvL) 5 凯瑟琳娜医院妇产科,5623 EJ 埃因霍温,荷兰; jurgen.piek@catharinaziekenhuis.nl 6 荷兰阿姆斯特丹妇科肿瘤中心妇科肿瘤科,Antoni van Leeuwenhoek 医院癌症研究所,1066 CX 阿姆斯特丹,荷兰;c.lok@nki.nl 7 荷兰乌得勒支大学医学中心病理学系,乌得勒支大学,3584 CX 乌得勒支,荷兰;GNJonges@umcutrecht.nl 8 荷兰乌得勒支大学医学中心肿瘤内科系,3584 CX 乌得勒支,荷兰;POWitteveen@umcutrecht.nl * 通信地址:R.Zweemer@umcutrecht.nl;电话:+31-887-555-555 † 上述作者贡献相同。