● HW1:研究过程中的道德规范 - 这项作业将向学生介绍开展公平和道德研究的概念。重点将放在对 IRB 本质的历史理解上。学生将完成 CITI 人类受试者研究培训作为其作业的一部分。● HW2:数据和预测中的偏见 - 学生将学习将基本的数据挖掘技术应用于数据。学生将设计和对大型数据集进行统计测试。这些测试将围绕公平概念以及如何利用技术来识别不公平进行设计。● HW3:NLP 中的偏见 - 学生将学习命名实体识别中的性别偏见。解决这项作业需要基本的自然语言处理技术,包括基于转换器的语言模型,如 BERT。● HW4:网络中的偏见——在这项作业中,学生将学习和应用基本的网络技术来发现网络中的性别偏见。女性在网络中的代表性是更多还是更少?她们是否倾向于占据比男性更高或更低的中心位置?注意:在书面和编程作业中,描述和分析的完整性和清晰度与最终的正确答案一样重要。仅发送单个最终值(即使正确)是不够的。请参阅下表:
●本课程分别列为11-741(研究生12个单位)和11-441(本科生的9个单位)。●11-741名学生必须完成所有5份家庭作业,并在期中和期末考试中回答所有问题。●11-441名学生必须在总共5个家庭作业(通过自己的选择)和70%的考试问题(通过自己的选择)中进行4分。如果本科生选择做更多的家庭作业,我们将在最终的HW分级中使用最优秀的4分。同样,如果本科生选择做更多的考试问题,我们将使用考试评分中70%最佳回答问题的分数。●详细的作业描述如下: - HW1。实施神经网络(CNN和RNN)进行二进制分类,并在Yelp评论数据集中使用单词嵌入,并使用TensorFlow或Keras等软件。> HW2。实现Yelp评论的多类分类的软马克斯逻辑回归,并通过损失函数的梯度推导。- HW3。实施Pagerank,个性化的Pagerank和查询敏感的Pagerank方法,用于网页流行度分析并评估其在Citeeval数据集中的检索性能。> HW4。实现图形神经网络(GNN)模型,用于SIMI监督节点分类,链接预测和图形分类。> HW5。知识图推理;带有transe的节点。
