Olumuyiwa AMUSAN,拉各斯大学,阿科卡,尼日利亚;约翰内斯堡大学,南非 Ponmile OLAWOORE,亚历克斯埃克维梅联邦大学,埃邦伊,尼日利亚 楚克韦布卡 IGWE 亚历克斯埃克维梅联邦大学,埃邦伊,尼日利亚 摘要:为了减少大气和环境污染的负面影响及其随之而来的负面影响,全球正在考虑多种可再生能源发电方案。因此,对环保、经济高效、接近零碳足迹的可持续能源解决方案进行技术比较仍然是研究领域的核心关注点。可以进一步探索太阳能、风能及其混合能源,以满足能源消费者不断增长的负荷需求,特别是在包括信息技术 (IT) 服务在内的高能源需求设施中。关键 IT 基础设施是研究机构的核心支柱,因此混合能源解决方案对于提高可持续性至关重要。本研究使用尼日利亚埃邦伊亚历克斯·埃克韦梅联邦大学的 IT 实验室,将太阳能和风能的混合能源与独立能源进行了比较。对单个能源和风能、太阳能和电池能源的混合能源进行了适当的尺寸测量,然后在 300W 实验室 IT 负载的高峰和非高峰时段测量了装置上的输入输出电压。实验结果表明,太阳能、风能及其混合能源的输入/输出峰值和非峰值直流电压分别为 12.67V/12.02V / 12.47V/11.61V、12.53V / 11.90V / 12.48V / 11.87V 和 12.78V / 12.09V / 12.57 / 11.95V,这意味着与负载高峰时段相比有显著增加,而负载非高峰时段则较低。结果还表明,与单独的太阳能或风能系统相比,每隔 5 分钟测试一次的太阳能-风能-电池混合系统具有更优越的输出电压调节和效率。结论是,太阳能、风能和电池能源的混合系统是大学 IT 实验室理想的独立可再生能源电源选择。关键词:太阳能光伏系统、风能系统、太阳能-风能-电池混合系统、信息技术
EEI混合逆变器是使用太阳能加储存技术的中小型杂种植物的解决方案。由于他的高可靠性,鲁棒性和灵活的配置,它是迷你和微电网项目的理想逆变器。通过EEI MPPT刺激促进的太阳阵列集成,以增加太阳能生产并优化功率输出。
MGU MGU 既可用作发电机,又可用作起动马达,采用皮带传动,可在车辆起动时辅助汽油发动机。高性能锂离子电池可存储从减速和制动中回收的电能,并包含通过集成起动发电机操作的怠速停止功能。根据发动机转速和油门位置,发动机 ECU 可判断驾驶员何时加速,然后使用电动机辅助来增加额外扭矩。最新混合动力系统的一个显著特点是电动发电机组位于 AGS 变速箱组件的输出侧。在此过程中,MGU 的输出直接传输到驱动轴,以填补换档期间的扭矩间隙,并提供更平稳的变速箱过渡。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
PERF 和 TRF 仅会从您提出退休申请之日起支付最多六个月的追溯福利。只有您和雇主提交了所有信息后,您的申请才能得到处理。请在退休日期前 90 天提交申请。一般来说,如果会员在退休日期前 90 天提交申请,并且雇主向 INPRS 提交了他们最后工作日和工资信息,会员可以在退休日期后一到两个月收到第一张退休福利支票。如果会员通过 MetLife 将其资金年金化,他们收到每月年金的时间取决于他们提交申请的时间以及他们的雇主向 INPRS 提交他们最后工作日和工资信息的时间。有关更多信息,请访问 http://bit.ly/inprsannuityfaq。如果您在离开 PERF/TRF 承保的工作时年龄还未达到退休年龄,但已获得既得利益,则无需执行任何操作。即使您不再返回承保服务,您的福利也会在您达到退休年龄时发放。
索引词 – 太阳能光伏电源、电池、LED、超级电容器、双向 DC/DC 转换器。简介空气污染是使用汽油、柴油等化石燃料的传统汽车所带来的危险后果之一。由于快速的城市化导致交通拥堵,污染变得更加严重。为了获得无污染的环境,建议在车辆系统中增加可再生资源的使用。在汽车领域更多地使用无污染排放的电动汽车将减少化石燃料的消耗并保护环境。在过去的几年里,人们对电动汽车 (EV) 和混合动力电动汽车 (HEV) 产生了浓厚的兴趣,因为它们可以在减少各种交通工具的温室气体排放方面发挥重要作用,因此有可能成为未来内燃机汽车的替代品。如今,为了与加油站竞争,电池的充电速度应该尽可能快。风能和太阳能等可再生能源是最可用的资源,但由于这些能源可用的电力具有间歇性,因此使用混合储能系统。混合储能系统由电池和超级电容器组成,可提高电池的充电和放电速率,从而延长电池寿命。它展示了太阳能电池板和电池的相互作用,这样就可以从太阳能系统连续充电。这种配置代表太阳能系统不切实际,并且倾向于低效运行。研究了电池和超级电容器的混合。它介绍了电动汽车中光伏板 - 电池 - 超级电容器混合系统的运行。介绍了双向 DC/DC 转换器的方法,以便电池的放电电流应在限制范围内。研究了超级电容器的瞬态、充电、放电模式。在现有电动汽车的改进结构中,将与超级电容器和电池组合一起提供高效的性能。超级电容器用于提供启动和过载期间所需的大电流,并有助于提高电池的充电状态。该项目由六个部分组成。第一部分包括提出的方法,第二部分包括框图。第三部分描述了电路拓扑。第四部分详细描述了使用 MATLAB 进行仿真,第五部分给出了仿真结果。第六部分是结论和结果。
全球变暖导致电动汽车 (Evs) 的广泛采用,它似乎是内燃机的最佳替代品。由于道路上的电动汽车数量增加,使用传统的基于化石燃料的电网为汽车充电既不高效也不经济。基于可再生能源的充电站为电动汽车充电提供了控制。该项目描述了基于太阳能和风能的充电机制 (SWCM),用于为电动汽车的电池组充电。可再生充电站由风力发电机和 PV (太阳能光伏) 模块组成。基于风能的充电机制极大地减少了对化石燃料发电的需求,从而减少了二氧化碳和 CO2 相关排放。针对当前情况,设计了一个集成太阳能、风能、电网和 BESS (电池储能系统) 的电动汽车 (EV) 充电站。为了在充电站中不间断供电,还考虑了额外的电网支持,而不会给电网带来额外的负担。为了平衡负载需求,该系统通过单相双向 DC-AC(交流)逆变器连接到电网。结果表明,可再生充电机制适用于电动汽车充电,并创造了无污染的环境。
节能源自诸多细节: • 全新独特的螺杆压缩机外形 • 高达 1:5 的超高体积流量控制范围 • 获得专利的吸入锥体,可减少压力损失 • 优化隔音罩内的气流。吸入冷空气,从而提高压缩效率。 • 改进了进气和出气轮廓的技术。它们确保压缩机级内的理想气流,并减少回流损失。 • 优化的标称尺寸,可减少压力损失 • 获得专利的消音器。它完全不使用吸收材料,可将压力损失和管道噪音降至最低。 • 电动隔音罩风扇 • 特殊的消音器绝缘。它代表低隔音罩温度,从而提高压缩效率 • 高级效率(IE3 电机)或超高级效率(IE4 电机) • 即使在压力波动大和入口温度极端的情况下也能稳定运行(例如在夏季或冬季运行) • 皮带传动可精确设计体积流量并快速调节所需的压缩空气
摘要:本研究旨在研究纤维增强对混合聚合物基质复合材料的机械性能的影响。由杂化聚合物复合材料制成的样品是由两种聚合物,90%环氧树脂和10%溶解树脂的反应制成的,并用两种类型的增强剂加固。用于当前研究的增强型是碳和凯夫拉纤维。纤维在平淡的编织中,并以体积分数添加。这项研究评估了两种情况下的机械特性,例如拉伸强度,硬度和冲击强度:一种仅用于环氧树脂/恢复混合物,另一个用于混合复合材料。添加纤维钢筋可改善环氧树脂的机械性能。kevlar纤维在用两层凯夫拉纤维加固时,为环氧/恢复混合物提供了最佳的机械性能。
• 固定收益 (DB) 计划是雇主赞助的退休计划,在退休时提供特定的每月福利。员工的工资和服务年限决定了退休福利。 • DB 计划资金通常包括雇主缴款、员工缴款和投资收益的组合。精算估值结果决定缴费率的建议。 • 公共养老金资产被放入集合信托基金,并由州一级的专业人员管理。集合信托基金资产用于投资以预先支付养老金福利的成本,从而提供规模经济,降低费用并增加回报。退休人员每月收到固定的分期付款,而不是一次性付款,并且福利在他们余生中得到保证。 • 投资表现不会影响 DB 计划福利的价值,但可能会影响或限制生活成本调整。 • 典型的 DB 计划将一些责任和风险放在雇主和雇员身上。 • DB 计划是公共部门最普遍的计划设计。 固定缴款计划