本研究探讨了磁流体力学 (MHD) 和生物对流对混合纳米流体在具有不同基液的倒置旋转锥体上的流动动力学的综合影响。混合纳米流体由悬浮在不同基液中的纳米颗粒组成,由于磁场和生物对流现象之间的相互作用而表现出独特的热和流动特性。控制方程结合了 MHD 和生物对流的原理,采用数值方法推导和求解。分析考虑了磁场强度、锥体旋转速度、纳米颗粒体积分数和基液类型等关键参数对流动行为、传热和系统稳定性的影响。结果表明,MHD 显著影响混合纳米流体的速度和温度分布,而生物对流有助于增强混合和传热速率。此外,基液的选择在确定混合纳米流体系统的整体性能方面起着关键作用。这项研究为优化在 MHD 和生物对流效应突出的应用中利用混合纳米流体的系统的设计和操作提供了宝贵的见解。关键词:磁流体动力学 (MHD);生物对流;混合纳米流体;倒置旋转锥;基液;纳米粒子;流动动力学 PACS:47.65.-d、47.63.-b、47.35. Pq、83.50.-v
从水库罐中,淡水泵送到施肥机上,所有营养素和肥料都与水混合在一起。将含有营养溶液的水提供给植物,并提供水培垂直农业系统中的泵的帮助。营养溶液提供了滋养植物,鼓励新芽,鲜花和水果的生长。适当的灌溉和肥料施用决定了农作物的健康。与养分一起提供的植物需要光,二氧化碳(CO 2)和水进行光合作用以及适当的生长和发育。提供给植物的养分可能是宏营养素和
摘要 智能水凝胶是一种智能材料,它可以对环境刺激作出反应来控制药物释放1。这篇综述文章讨论了用于药物输送的智能水凝胶的最新进展,包括热响应1、pH 响应、光响应和酶响应系统。我们重点介绍了它们在癌症治疗、糖尿病管理、伤口愈合和神经系统疾病中的应用。我们还讨论了智能水凝胶的优势,包括提高疗效和减少副作用。最后,我们讨论了该领域的挑战和未来方向。1,2 引言 “智能水凝胶是一类先进的生物材料,可以对温度、pH、光和酶等各种刺激作出反应来控制药物释放。1这些智能材料彻底改变了药物输送领域,提供了前所未有的精度、靶向性和功效。凭借其独特的性能和多功能性,智能水凝胶在治疗从癌症和糖尿病到神经系统疾病和传染病等多种疾病方面显示出巨大的前景3。本综述旨在全面概述用于药物输送的智能水凝胶的最新进展,重点介绍其设计、机制、应用和未来发展方向。”4,5 最新进展 - 用于控制药物释放的热响应水凝胶1 - 用于靶向输送的 pH 响应水凝胶2 - 用于按需释放的光响应水凝胶 - 用于靶向治疗的酶响应水凝胶 用于控制药物释放的热响应水凝胶 热响应水凝胶是一种智能水凝胶,它可以响应温度变化来控制药物释放。1 以下是更详细的概述: 原理 _ 热响应水凝胶由聚合物制成,这些聚合物会响应温度变化而改变其膨胀行为。在低于某个温度(最低临界溶解温度,LCST)时,水凝胶会膨胀并具有亲水性,而在高于 LCST 时,水凝胶会脱水并具有疏水性。1,3,4 机理 1. 在低温下,水凝胶会膨胀,从而可以装载药物。1,6 2. 随着温度升高,水凝胶会脱水,释放装载的药物。8 3. 可以通过调节温度和水凝胶性质来控制药物释放速率。7 优点 1. _控释_:温敏水凝胶可以根据特定的温度变化释放药物。6 2. _靶向递送_:水凝胶可以设计为在具有独特温度曲线的特定部位或组织中释放药物。9 3. _生物相容性_:温敏水凝胶由生物相容性材料制成。7 应用 1. _癌症治疗_:化疗药物的靶向递送 6 2. _糖尿病管理_:胰岛素的控制释放6 3. 伤口愈合:持续释放生长因子和抗生素7
有效的洪水管理依赖于准确的预测。视觉建模技术在水文和水资源管理中起着至关重要的作用。这项研究分析了水文区域的数据8。所采用的分析flexPlot,线性建模,混合建模和广义线性建模。结果为水文模式和趋势提供了宝贵的见解。FlexPlot可视化揭示了Kastina与响应变量之间的显着正相关关系。线性建模将Kastina(β= 0.464,p <0.01)和GUSA(β= 0.552,p <0.01)鉴定为显着的预测因子,而Goroyo则没有显着效果。混合建模证实了这些发现,Kastina(估计= 0.267,p <0.01)和GUSA(估计= 0.272,p <0.01)表现出显着的正相关关系。广义线性建模支持这些结果,Kastina(估计= 0.274,p <0.01)和GUSA(估算= 0.313,p <0.01)显示出显着的积极作用。模型比较证实了Kastina和Gusa的重要性。回归分析产生了重大结果,从而提供了对变量之间关系的见解。这些发现表明Kastina和Gusa是重要的预测因子,导致响应变量的变化。结果为工程应用提供了宝贵的见解,强调了在预测模型中考虑这些变量的重要性。
预计到 2050 年,氢能将成为全球未来能源结构的重要组成部分,占世界能源使用量的 12%,而目前仅为 0.1% 9。其中绝大部分预计将以绿氢的形式生产。随着向绿氢的转变以及向可再生能源系统的广泛倾斜,能源供应将发生地理变化。能源供应和贸易路线历来由煤炭、石油和天然气商品决定,而这些商品的丰富程度受特定地理位置的限制。氢气供应将由各地区利用强大可再生资源的能力来分配,这与煤炭、石油和天然气的丰富程度无关。
1. ISO 16110-1 使用燃料处理技术的氢气发生器 - 第 1 部分:安全性 2. ISO 16110-2 使用燃料处理技术的氢气发生器 - 第 2 部分:性能试验方法 3. ISO 11114-4 可运输气瓶 - 气瓶和阀门材料与气体内容物的兼容性 - 第 4 部分:选择耐氢脆钢的试验方法 4. ISO 16111 可运输气体存储装置 - 可逆金属氢化物中吸收的氢气 5. IEC 62282-3-100:2019,燃料电池技术 - 第 3-100 部分:固定式燃料电池发电系统 - 安全性 6. IEC 62282-3-200:2015,燃料电池技术 - 第 3-200 部分:固定式燃料电池发电系统 - 性能试验方法 7. IEC 62282-3-201:2017,燃料电池技术 - 第3-201:固定式燃料电池发电系统 - 小型燃料电池发电系统性能试验方法 8. IEC 62282-3-300:2012,燃料电池技术 - 第 3-300 部分:固定式燃料电池发电系统 - 安装
糖尿病和其他病理状况会破坏伤口愈合过程,导致慢性伤口,导致严重感染。蛋白蛋白,例如溶菌酶和卵纤维蛋白,引起了人们的兴趣,尤其是因为它们表现出的抗氧化剂和抗菌活性。这些生物活性蛋白可以用来富集晚期伤口敷料膜,这可以帮助控制伤口氧化应激,从而加速伤口愈合和/或预防细菌感染。这项工作的目的是根据合成聚合物和多糖的混合物开发新型的水凝胶制剂,并掺入蛋清蛋白和/或肽,以研究其作为高级伤口敷料的适用性。研究了水凝胶的流变特性,以评估粘弹性和凝胶化行为。通过扫描电子显微镜研究了水凝胶敷料的显微结构。还评估了PBS缓冲液中的侵蚀。获得了具有伤口愈合中潜在应用的柔性,皮肤粘附的水凝胶膜。
2024 年康涅狄格州清洁氢能路线图由 ENGIE Impact 在康涅狄格州能源与环境保护部 (DEEP) 的协调下制定。该路线图旨在评估氢能对帮助该州实现其雄心勃勃的气候目标的潜在作用。该路线图是在 André de Fontaine(提供战略指导)、Jackie Brew(管理项目)和 Fernando Martínez(领导技术和建模部分)的指导下进行的大量研究、建模和分析的结果。主要作者得到了 ENGIE Impact 团队其他成员的支持,他们在路线图制定的各个阶段做出了贡献:Alyanna Felix、Camila Socías、Felipe Aldana、Jasper Schrijvers、Martina Carosso、Nabil Kharrat、Pedro Lizaola、Rashel Bajaj、Sarah Garic、Tomás Baeza 和 Tomás Villanueva。作者对整个 DEEP 团队表示感谢,感谢他们有机会为这个重要的项目做出贡献。特别感谢 DEEP 的能源和技术政策局 (BETP) 团队,他们的反馈和支持在整个路线图的开发过程中发挥了重要作用。