使用化学浴沉积合成 ZnO 薄膜并研究物理化学性质 Pooja B.更多,1 Sanjay B. Bansode,1 Mariya Aleksandrova,2 Sandesh R. Jadkar 1 和 Habib M. Pathan 1,* 摘要 在目前的研究中,我们在 70°C 温度下通过化学浴沉积法 (CBD) 在 FTO(氟掺杂氧化锡)基板上合成了 ZnO 薄膜。X 射线衍射研究表明,ZnO 薄膜具有六方纤锌矿结构,沿 (002) 方向有纹理。此外,扫描电子显微镜证实了沿垂直(c 轴)方向取向的微米级棒的形成。此外,还检查了各种光学和光电化学 (PEC) 特性。从紫外-紫外光谱分析可知,ZnO 薄膜的光学带隙为 3.1 eV。光致发光光谱显示,沉积的薄膜在紫外区具有尖锐的发射,在可见光区具有宽发射,这可能与 ZnO 中的缺陷有关。电化学阻抗谱表明,在光照下,ZnO 薄膜表现出较高的光电流密度的 PEC 性能。计时电流法显示,光电流密度随时间变化的稳定性测试为 60 μA/cm 2 。此外,莫特-肖特基曲线证实,沉积的 ZnO 薄膜为 n 型,载流子密度为 8.55×10 18 cm -3 。
PSEP - 加拿大课程的编辑贡献来自以下人士:Phil Hassen(国际医疗保健质量保证协会)、John Wade(温尼伯地区卫生局)、Paula Beard(加拿大患者安全研究所)、Marie Owen(加拿大患者安全研究所)、Julie Barré(加拿大患者安全研究所)、Gordon Wallace(加拿大医疗保护协会)、Carolyn Hoffman(艾伯塔省卫生服务局)、Deborah Danoff(加拿大医疗保护协会)、Linda Hunter(渥太华医院)、Jane Mann(菲沙卫生局)、Wayne Millar(东部卫生局)、Sherrisa Microys(渥太华医院)、Donna Davis(加拿大患者安全组织)、Elinor Caplan(加拿大患者安全组织)、Hugh MacLeod(加拿大患者安全研究所)、Redouane Bouali(渥太华医院)、Alan Baxter(渥太华医院)、Lisa Calder(渥太华医院)、Craig Bosenburg(温哥华岛卫生局)、Susan MacKnak(里贾纳夸佩勒地区卫生局)、Annamarie Fuchs,顾问,Anne Bialachowski,加拿大社区和医院感染控制协会,Joanne Habib,加拿大社区和医院感染控制协会,Deborah Simmons,德克萨斯大学休斯顿健康科学中心,以及 Lisa Little,顾问。
我们感谢 Junghoon Lee 对不同融资方案的宏观经济影响所做的分析。我们感谢所有对本文提出意见的人,包括 Carrie H. Colla(前 CBO 成员)、Berna Demiralp、Devrim Demirel、Mark Doms、Noelia Duchovny、Sean Dunbar、Justin Falk、Michael Falkenheim、Sebastien Gay、Bilal Habib、Edward Harris、Nianyi Hong、Nadia Karamcheva、Joseph Kile、Sarah Masi、John McClelland、Shannon Mok、Xiaotong Niu、Emily Stern、Robert Stewart、Phillip L. Swagel、Julie Topoleski 和 Chapin White(均来自 CBO)。下列人士也提出了有益的评论:布朗大学的 Anna Aizer、芝加哥联邦储备银行的 Kristin Butcher、科罗拉多大学丹佛分校的 Chloe East、哈佛大学的 Richard Frank、芝加哥大学的 Jacob Goldin、明尼阿波利斯联邦储备银行的 Andrew Goodman-Bacon、宾夕法尼亚大学的 Atul Gupta、麻省理工学院的 Nathaniel Hendren、加州大学伯克利分校的 Hilary Hoynes、芝加哥大学的 Robert Kaestner、密歇根大学的 Amanda Kowalski、加州大学洛杉矶分校的 Adriana Lleras-Muney、财政部的 Ithai Lurie、加州大学戴维斯分校的 Marianne Page、西北大学的 Diane Schanzenbach、布鲁金斯学会的 Louise Sheiner、约翰霍普金斯大学的 Emilia Simeonova、布鲁金斯学会的 David Wessel 以及纽约大学的 Laura Wherry。作者还感谢 Christine Bogusz 的编辑以及 Adam Abadi 和 Joyce Shin 对本文的事实核查。
文件审查员:Juhani Knuuti,(CPG审查协调员)(芬兰),Steen Dalby Kristensen,(CPG审查协调员)(丹麦)(丹麦),Victor Aboyans(法国),Ingo Ahrens(德国),Ingo Ahrens(德国),Sotiris Antoniou(Sotiris antoniou(sotiris antoniou andworway atnoniou and arnoway) Andreas Baumbach (United Kingdom), Helmut Baumgartner (Germany), Michael Böhm (Germany), Michael A. Borger (Germany), Hector Bueno (Spain), Jelena Č elutkien ė (Lithuania), Alaide Chieffo (Italy), Maya Cikes (Croatia), Harald Darius (Germany), Victoria Delgado (西班牙),Philip J. Devereaux(加拿大),David Duncker(德国),Volkmar Falk(德国),Laurent Fauchier(法国),Gilbert Habib(法国),David Hasdai(以色列),Kurt Huber(Kurt Huber(Austria)联邦),Konstantinos C. Koskinas(瑞士),Dipak Kotecha(英国),Ulf Landmesser(德国),罗勒S. Lis Neubeck(英国),Jens Cosedis Nielsen(丹麦),Steffen E. Petersen(英国),Eva Prescott(丹麦),Amina Rakisheva(哈萨克斯坦)(哈萨克斯坦),安蒂·萨拉斯特(Antti Saraste),安蒂·萨拉斯特(Antti Saraste),芬兰(芬兰),德国(德国),迪尔克·西尔(Dirk) (塞尔维亚),罗布·F·斯托里(英国),朱利安·十伯格(荷兰),马蒂亚斯·蒂尔曼(Matthias Thielmann)(德国)和Rhian M. Touyz(加拿大/英国)
抽象的非传染性疾病(NCD),例如糖尿病,高血压和肥胖症,构成了重大的全球健康挑战。虽然已知中度到剧烈的运动有益于NCD患者,但低强度抗性带运动(RBE)的有效性仍然不确定。一项关于从事RBE的肥胖个体的12个月研究表明,身体成分,肌肉质量和血糖控制的一致。同样,一项为期9个月的研究,涉及100例糖尿病患者,显示BMI,体内脂肪百分比和血糖水平显着降低,以及肌肉质量和蛋白质含量的增加。在另一项关于慢性肾脏疾病(CKD)患者的9个月研究中,RBE导致BMI,腹部脂肪百分比,血糖和血压显着降低,而肌肉质量保持稳定。该研究进一步评估了220名从医院招募的NCD患者,这些患者是根据BMI,肥胖,糖尿病和CKD状态随机分配给组的。结果指标包括身体组成的变化,每日步数,血糖和脂质水平以及程序满意度。总而言之,RBE被证明是改善健康个体和患有肥胖,糖尿病和CKD患者的人体组成,肌肉质量,蛋白质含量和血糖控制的有效干预措施。与其他低强度练习相比,RBE始终在BMI,体内脂肪和血糖水平降低,这使其成为管理NCD的有前途的策略。在2019年全球5500万死亡中,NCD占死亡人数约4100万(71%)(Ramesh&Kosalram,2023年)。关键字:健康状况结果,代谢障碍,非传染性疾病,计划满意度,抵抗乐队运动简介非传染性疾病(NCDS)(NCDS),也称为生活方式疾病,在全国和全球范围内构成了重大的健康问题(MacNiven and。糖尿病,高血压,心脏病,中风和癌症等疾病由于暴露于污染的空气和环境因素而影响不健康的生活方式行为(Akbaraly等,2013; Mozaffarian,2016; Myers等,2002)。 这些行为包括不平衡的饮食(糖,脂肪和盐的含量高,水果和蔬菜中的低水平),久坐的生活方式,吸烟,饮酒过多和压力(Habib等人,2020年)。 肥胖症,一种至关重要的NCD,导致人类心脏病的发展(Min等,2021)。 未能解决这些行为会导致发病率,残疾和死亡率增加,并带来巨大的经济负担。 因此,促进健康的饮食习惯,定期运动和足够的休息对于预防NCD和癌症至关重要,而不是仅仅依靠医疗(Budreviciute等,2020)。 使用用户友好的电子>整合营养创新,个性化锻炼建议和个人健康促进糖尿病,高血压,心脏病,中风和癌症等疾病由于暴露于污染的空气和环境因素而影响不健康的生活方式行为(Akbaraly等,2013; Mozaffarian,2016; Myers等,2002)。这些行为包括不平衡的饮食(糖,脂肪和盐的含量高,水果和蔬菜中的低水平),久坐的生活方式,吸烟,饮酒过多和压力(Habib等人,2020年)。肥胖症,一种至关重要的NCD,导致人类心脏病的发展(Min等,2021)。未能解决这些行为会导致发病率,残疾和死亡率增加,并带来巨大的经济负担。因此,促进健康的饮食习惯,定期运动和足够的休息对于预防NCD和癌症至关重要,而不是仅仅依靠医疗(Budreviciute等,2020)。使用用户友好的电子>整合营养创新,个性化锻炼建议和个人健康促进
免责声明:本文件由 Arif Habib Limited (AHL) 的研究分析师编写。本文件不构成购买或出售任何证券的要约或邀请。本出版物仅供公司客户分发,这些客户被认为是相当成熟的投资者,了解投资股票证券所涉及的风险。此处包含的信息基于公开可用的数据和被认为可靠的来源。尽管已尽一切努力确保准确性和客观性,但 AHL 并不保证其准确或完整,不应依赖这些内容。特别是,该报告没有考虑投资者的投资目标、财务状况和特殊需求。本文件中提供的信息截至本报告发布之日,不能保证未来结果或事件与此信息一致。此信息如有更改,恕不另行通知。AHL 保留根据需要随时修改和更改本声明的权利。但是,AHL 没有义务更新或保持信息最新。 AHL 致力于为客户提供独立、透明的建议,并乐意根据客户的特定疑问提供任何信息。过去的表现不一定是未来表现的指南。本文件仅供参考,并非旨在且不能单独作为任何投资决策的基础。用户承担使用本信息的全部风险。本文件的每个接收者都应进行其认为必要的调查,以对本文件中提及的公司证券的投资(包括所涉及的优点和风险)进行独立评估,并应咨询自己的顾问以确定此类投资的优点和风险。AHL 或其任何附属公司对因本报告中包含的信息中的任何无意错误而可能给任何人造成的任何损失或损害概不负责。
免责声明:该文档是由Arif Habib Limited(AHL)的研究分析师编写的。本文档不构成购买或出售任何担保的要约或征集。本出版物仅用于向公司的客户分发,这些客户被认为是合理成熟的投资者,这些投资者了解投资股票证券所涉及的风险。本文包含的信息基于可公开可用的数据和可靠的来源。虽然要确保准确性和客观性,但AHL并不能表示它是准确或完整的,因此不应依靠它。,该报告不考虑投资目标,财务状况和投资者的特定需求。本文档中给出的信息截至本报告的日期,无法保证未来的结果或事件将与此信息一致。此信息可能会更改,而无需任何事先通知。ahl保留对本声明进行修改和更改的权利。但是,AHL没有义务更新或保留最新信息。ahl致力于向其客户提供独立和透明的建议,并很乐意为特定的客户查询提供任何信息。过去的表现不一定是未来表现的指南。本文件仅提供帮助,并且不打算是,也不必须单独作为任何投资决定的基础。用户承担此信息的任何用途的全部风险。本文档的每个收件人都应进行调查,认为必须对本文档中提到的公司证券进行独立评估(包括涉及的案情和风险)进行独立评估,并应咨询其自己的顾问以确定此类投资的优点和风险。ahl或其任何关联公司对本报告中包含的任何信息中的任何无意错误造成的任何损失或损害均不承担任何责任。
免责声明:该文档是由Arif Habib Limited(AHL)的研究分析师编写的。本文档不构成购买或出售任何担保的要约或征集。本出版物仅用于向公司的客户分发,这些客户被认为是合理成熟的投资者,这些投资者了解投资股票证券所涉及的风险。本文包含的信息基于可公开可用的数据和可靠的来源。虽然要确保准确性和客观性,但AHL并不能表示它是准确或完整的,因此不应依靠它。,该报告不考虑投资目标,财务状况和投资者的特定需求。本文档中给出的信息截至本报告的日期,无法保证未来的结果或事件将与此信息一致。此信息可能会更改,而无需任何事先通知。ahl保留对本声明进行修改和更改的权利。但是,AHL没有义务更新或保留最新信息。ahl致力于向其客户提供独立和透明的建议,并很乐意为特定的客户查询提供任何信息。过去的表现不一定是未来表现的指南。本文件仅提供帮助,并且不打算是,也不必须单独作为任何投资决定的基础。用户承担此信息的任何用途的全部风险。本文档的每个收件人都应进行调查,认为必须对本文档中提到的公司证券进行独立评估(包括涉及的案情和风险)进行独立评估,并应咨询其自己的顾问以确定此类投资的优点和风险。ahl或其任何关联公司对本报告中包含的任何信息中的任何无意错误造成的任何损失或损害均不承担任何责任。
1。Frangoul,H。等。exagamglogene自动赛,用于严重的镰状细胞疾病。n Engl J Med 390,1649–1662(2024)。2。忘记,B。G。胎儿血红蛋白的遗传持久性的分子基础。ann。N. Y. Acad。 SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。N. Y. Acad。SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。SCI。850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。850,38–44(1998)。3。Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。KLF1在英国HPFH中驱动胎儿血红蛋白的表达。血液130,803–807(2017)。4。Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。NAT COMUM 6,7085(2015)。5。Martyn,G。E.等。近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。血液133,852–856(2019)。6。Martyn,G。E.等。自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。nat Genet 50,498–503(2018)。7。Frati,G。等。CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。8。Anzalone,A。V。等。搜索和重新固定基因组编辑,无需双链断裂或供体DNA。自然576,149–157(2019)。9。Coleman,M。B.等。am。J. Hematol。42,186–190(1993)。 10。 Chen,P。J.等。42,186–190(1993)。10。Chen,P。J.等。Chen,P。J.等。g伽玛A伽马(β+)胎儿血红蛋白的遗传持久性:g伽玛-158 c-> t在顺式中与-175 t-> c c gamma-lobin基因的突变会导致G Gama-- gamma基因的增加导致G Gama-Globobin的增加。通过操纵细胞决定因素的编辑结果来增强质量编辑系统。Cell 184,5635-5652.E29(2021)。 11。 Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Cell 184,5635-5652.E29(2021)。11。Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Ravi,N。S.等。通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。Elife 11,E65421(2022)。12。Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Kim,H。K.等。预测人类细胞中主要编辑指南RNA的效率。nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。13。Nelson,J。W.等。设计的Pegrnas提高了主要的编辑效率。NAT生物技术40,402–410(2022)。14。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。核酸Res 50,1187–1197(2022)。15。Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Lee,J。等。prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。nat Commun 14,1786(2023)。16。Antoniou,P。等。基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。nat Commun 13,6618(2022)。17。Pavani,G。等。通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。血液Adv 5,1137–1153(2021)。18。Everette,K。A.等。在体内造血干细胞的体内质量编辑促进小鼠植入后镰状细胞疾病表型。nat Biomed Eng 7,616–628(2023)。19。Peterka,M。等。利用DSB修复以促进有效的同源性依赖性和 - 独立的质量编辑。nat Commun 13,1240(2022)。20。Magnani,A。等。对镰状细胞疾病的同种异体移植后混合嵌合体患者进行了广泛的多系数分析:对基因治疗的造血和植入阈值的见解。Haematologica 105,1240–1247(2020)。21。Sun,Y。等。 在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Sun,Y。等。在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。在小鼠中耐用基因校正的肺部干细胞的体内编辑。科学384,1196–1202(2024)。22。Doman,J。L.等。噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。单元格186,3983-4002.E26(2023)。23。Wimberger,S。等。同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。nat Commun 14,4761(2023)。24。Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Yan,J。等。用内源性的小RNA结合蛋白改善原始编辑。自然628,639–647(2024)。25。Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。26。核酸res。Brinkman,E。K.,Chen,T.,Amendola,M。&Van Steensel,B。通过序列痕量分解对基因组编辑的易于定量评估。42,E168(2014)。 27。 Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和42,E168(2014)。27。Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和Brusson,M。等。新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。mol the核酸32,229–246(2023)。28。Gaudelli,N。M.等。腺嘌呤基础编辑者的定向演变,活动增加和
人工智能 (AI) 科学大会联合主席 Rick Stevens 阿贡国家实验室副主任 Jeffrey Nichols 橡树岭国家实验室副主任 Katherine Yelick 劳伦斯伯克利国家实验室副主任 能源部联系人 Barbara Helland 能源部项目经理 特殊协助 分会负责人: 阿贡国家实验室 Valerie Taylor,数学和计算机科学部主任 Mihai Anitescu、Prasanna Balaprakash、Pete Beckman、Thomas S. Brettin、Charles E. Catlett、Andrew Chien、Santanu Chaudhuri、Ian Foster、Dogan Gursoy、Salman Habib、Cynthia Jenks、Rao Kotamarthi、Zein-Eddine Meziani、Michael E. Papka、Robert Ross、Stefan Wild 劳伦斯伯克利国家实验室 David Brown,计算研究部主任 Katerina Antypas、Wes Bethel、Ben Brown、Paolo Calafiura、Wibe de Jong、Sudip Dosanjh、Inder Monga、Peter Nugent、Mary Ann Piette、Prabhat、Brian Quiter、Lavanya Ramakrishnan、John Shalf、Haruko Wainwright、John Wu、Petrus Zwart 橡树岭国家实验室 Arthur Barney Maccabe,计算机科学和数学部主任 David Dean、James Hack、Kenneth Herwig、Judith Hill、Forrest M. Hoffman、Teja Kuruganti、Bronson Messer、Nageswara Rao、Arjun Shankar、Bobby G. Sumpter、Georgia Tourassi、John Turner、Jeffrey Vetter、David Womble、Steven Young 劳伦斯利弗莫尔国家实验室 Ana Kupresanin 通用原子公司 David Humphreys 行政: 阿贡国家实验室:Silvia Mulligan 劳伦斯伯克利国家实验室:Hellen Cademartori 橡树岭国家实验室:Becky Verastegui