报告因收到的来自一群杰出学者和发展从业人员的评论而更加丰富,他们担任外部同行评审员,包括 Aamir Riaz(国际电信联盟)、Aban Marker Kabraji(联合国亚太发展协调办公室)、Ali Shareef(马尔代夫气象局)、Animesh Kumar(联合国减少灾害风险办公室)、Anita Cadonau(联合国减少灾害风险办公室)、Anne-Claire Fontan(世界气象组织)、Anoja Seneviratne(斯里兰卡灾害管理中心)、Arash Malekian(德黑兰大学)、Atsuko Okuda(国际电信联盟)、Ben Churchill(世界气象组织)、Chung Kyu Park(延世大学)、Cyrille Honoré(世界气象组织)、Daniela Cuellar Vargas(世界气象组织)、Diana Mosquera Calle(联合国减少灾害风险办公室)、Erica Allis(世界气象组织)、Iftekhar Ahmed (澳大利亚纽卡斯尔大学)、Jayaraman Venkatakrishnan (印度空间研究组织)、Marco Toscano-Rivalta (联合国减少灾害风险办公室)、Mozaharul Alam (联合国环境规划署)、Muhibuddin Usamah (世界气象组织)、Nakiete Msemo (世界气象组织)、Niladri Gupta (亚洲灾害防备中心)、Rahul Sengupta (联合国减少灾害风险办公室)、Sanny Ramos Jegillos (联合国开发计划署)、Santosh Kumar (印度政府内政部国家灾害管理局)、Steven Goldfinch (亚洲开发银行)、Suprayoga Hadi (印度尼西亚副总统办公室)、Tetsuo Kuyama (全球环境战略研究所)、Veronica Grasso (世界气象组织) 和 Xuan Che (联合国减少灾害风险办公室)。
上午会议 08:30 边喝咖啡边见面 09:00 Simon Hanslmayr 教授致欢迎辞和介绍 第 1 场:新技术(主席:Michele Svanera 博士) 09:15 Elsa Fouragnan 博士主题演讲:通过经颅超声刺激诱导短期至中期神经可塑性效应 10:00 Daniele Faccio 教授:脑活动和神经退行性疾病的光学感知 10:20 Hadi Heidari 教授:用于超分辨率肌肉测量的可扩展磁性传感器 10:40 咖啡休息 第 2 场:非侵入性电刺激(主席:Gregor Thut 教授) 11:00 Nir Grossman 博士主题演讲:非侵入性时间干扰深部脑刺激 11:45 Gang Li 博士:使用脑刺激模型减轻脑功能障碍12:05 杰玛·利尔茅斯博士 这都是骗局吗?双盲对照条件在电神经计算中的重要性 12:25 午餐和海报展示,中庭特别会议(主席:Simon Hanslmayr 教授) 13:45 Jacques Carolan 博士主题演讲:大规模精确与人脑交互:解锁神经技术的下一个前沿 第三场:公开会议(主席 Gabriela Cruz 博士) 14:30 Emma Gordon 博士 认知增强、神经技术和真实性 14:50 Aleksandra Vuckovic 博士 用于神经性疼痛管理的脑电图技术 15:10 咖啡休息 第四场:临床应用(主席 Monika Harvey 教授) 15:30 Keith Mathieson 教授主题演讲:黄斑变性的光伏视力恢复 16:15 Cassandra Sampaio 博士 - BapFsta
Gabriele Chelini, 1,2,3,15 Hadi Mirzapourdelavar, 4,15 Peter Durning, 1 David Baidoe-Ansah, 4 Manveen K. Sethi, 5 Sinead M. O'Donovan, 6 Torsten Klengel, 2,7,8 Luigi Balasco, 3 Cristina Berciu, 1 Anne Boyer-Boiteau, 1 Robert McCullumsmith, 6 Kerry J. Ressler, 2,9,10 Joseph Zaia, 5,11 Yuri Bozzi, 3,12,16 Alexander Dityatev, 4,13,14,16 and Sabina Berretta 1,2,9,16,17, * 1 Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA 2 Department of Psychiatry,哈佛医学院,马萨诸塞州波士顿,马萨诸塞州02215,美国3思维/脑科学中心,特伦托大学,罗韦雷托大学38068意大利特伦托4分子神经塑性小组,德国神经退行性疾病中心,玛格德堡39120萨克萨尼 - 阿纳尔特的Magdeburg 39120 saxony-anhalt for Bilesy and Boiloligy and Specterriesity sepsectrial sepsectrial sepsectrialsion,波士顿大学医学院,马萨诸塞州波士顿,美国02118,美国6认知失调研究实验室,托莱多大学,托莱多,俄亥俄州托莱多,俄亥俄州43606,美国7转化分子基因组学实验室,麦克莱恩医院,马萨诸塞州贝尔蒙特,马萨诸塞州02478美国,马萨诸塞州波士顿,美国102215,美国10恐惧实验室神经生物学,麦克莱恩医院,马萨诸塞州贝尔蒙特,马萨诸塞州02478,美国11生物信息学计划,波士顿大学,波士顿,马萨诸塞州,马萨诸塞州02215,美国12 CNR神经科学学院PISA PISA,PISA,56124 PISA,56124 PISA,56124 PISA,ITALY 13 MADICLY FIRECRING 3.911德国萨克森 - 安哈尔特(Saxony-Anhalt)14行为脑科学中心,奥托·冯·格里克大学(Otto von Guericke University),玛格德堡(Magdeburg)39106德国萨克森 - 安哈尔特(Saxony-Anhalt),德国15这些作者同样贡献了16个高级作者17高级作者17铅接触 *信函 *s.berretta@mclearemclean.harvard.harvard.harvard.harvard.ulhttps:/ed.uh httpps://do./goi.erg/10.10.10.10.10.16.16.16.16.16.16.16.166
Nathan Collin Allen 已授予 2023 年 5 月 9 日 Michael Christopher Andary 已授予 2023 年 5 月 9 日 Manbir Singh Arora 已授予 2023 年 5 月 12 日 Gursimmer Banwait 已授予 2023 年 5 月 8 日 Leo Bao 已授予 2023 年 5 月 24 日 Gabriel Euzebio Chirico Baranoski 已授予 2023 年 5 月 9 日 Benjamin James Beazley 已授予 2023 年 5 月 9 日 Charlie Cai 已授予 2023 年 5 月 9 日 Alex Chen Chen 已授予 2023 年 5 月 8 日 Elijah Yilang Chen 已授予 2023 年 5 月 12 日 Adrian Hei Tung Chow 已授予 2023 年 5 月 18 日 Thomas Edward Cojocar 已授予 2023 年 5 月 8 日 Karan Dahiya 已授予 2023 年 5 月 9 日 Harsimran Singh Darhan 已授予 2023 年 3 月 21 日2023 Elizabeth Margaret Drew 授予 2023 年 5 月 9 日 Ji Yuan Feng 授予 2023 年 5 月 9 日 Aidan Ronald Gordon Foster 授予 2023 年 5 月 24 日 Tristan Pierre Gervais 授予 2023 年 5 月 9 日 Selina Hsu 授予 2023 年 5 月 8 日 Chun-De Hu 授予 2023 年 5 月 16 日 Daniel Igino Ingriselli 授予 2023 年 5 月 9 日 Alexander Jabbour 授予 2023 年 5 月 12 日 Hadi Khadra 授予 2023 年 5 月 9 日 Muhammad Ayan Khan 授予 2023 年 5 月 12 日 Larry Li 授予 2023 年 5 月 16 日 Jacky Liang 授予 2023 年 5 月 12 日 Kaiwen Liao 授予 2023 年 5 月 8 日 Branden Alexander Lisk 授予2023 Kimberly Kim Yen Liu 授予 2023 年 5 月 16 日 Shu Yan Liu 授予 2023 年 5 月 9 日 Aleksi Aaron Luoma 授予 2023 年 5 月 24 日 Kyle Fraser Macdonald 授予 2023 年 5 月 16 日
2024年10月28日,印度尼西亚Sulzer的Sulzer服务能源转型和安全性已与印度尼西亚国有国有Pertamina的地热能源子公司PT PTAMINA GEOTHMAL ENEMAL TBK(PGE)签署了一项为期五年的客户服务协议(CSA)。该协议将支持该国不断增长的人口的能源安全和过渡。作为一种干净可再生的资源,地热能生产减少了对常规能源的依赖,降低了温室气体的排放,并提供了稳定且可持续的能源。Sulzer将为PGE的所有地热发电厂提供战略维护支持,以确保其联合容量为330 MW,足以以可持续的方式为大约620,000套房屋供电。该消息传来,因为该国继续加强其为实现其2060净零排放目标的努力,包括增加可再生能源生产以及从常规能源过渡。印度尼西亚位于火山活跃的太平洋火环上,拥有大量未开发的地热能储量。PGE在实现这一潜力方面发挥了关键作用,全国生产能力达到672.5兆瓦。PGE的工厂是印尼电力网格的关键基本装载机,为一致且可持续的电源提供了必不可少的生产正常运行时间和设备可靠性。根据协议,Sulzer的服务范围将包括维修技术,中断优化,大修,转子寿命扩展和技术咨询服务,以帮助PGE实现其功率能力和供应目标。长期存在的伙伴关系总监Sulzer Services(印度尼西亚)Joko Sutopo说:“该协议证明了我们与PGE的长期合作伙伴关系,展示了我们久经考验的往绩记录,PGE对我们对卓越服务的能力和承诺的信任。随着该地区工业增长和农村电气化计划驱动的电力需求的增加,我们很自豪地支持PGE使能源过渡成为现实。我们的目标是确保PGE仍然是其服务社区和企业的可靠电源。” PGE首席执行官Julfi Hadi补充说:“作为推进该地区可再生能源的先驱,我们与Sulzer的合作强调了我们致力于扩大地热能源以支持印度尼西亚脱碳目标并提高能源安全的承诺。通过这种合作伙伴关系,我们还旨在通过整合创新的解决方案和最佳实践来提高运营卓越,从而提高地热运营的效率,可靠性和可持续性。通过不断优化我们的流程并利用最先进的技术,PGE的位置很好,可以在提供清洁能源的同时,在维护世界一流的运营绩效方面。” “设备的可靠性对于我们的工厂的成功至关重要,在苏尔策中,我们找到了一个合作伙伴,该合作伙伴在与多个技术差异化的服务方面提供了创新。一起,我们将利用我们的解决方案和集体专业知识来确保地热发电厂的最佳性能和可靠性。”
1。See generally Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario Amodei & I. Sutskever, Language Models Are Unsupervised Multitask Learners (2019) (unpublished manuscript), https://d4mucfpksywv.cloudfront.net/better-language-models/language-model s.pdf [https://perma.cc/7tud-38j5]; Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike &瑞安·洛(Ryan Lowe),培训语言模型遵循人类反馈的指示4,2022)(未出版的手稿),https://arxiv.org/pdf/2203.02155.pdf [https://perma.cc/myf8-28l9]。2。See Muhammad Usman Hadi , Qasem Al Tashi, Rizwan Qureshi, Abbas Shah, Amgad Muneer, Muhammad Irfan, Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu & Seyedali Mirjalili, Large Language Models: A Comprehensive Survey of Its Applications, Challenges, Limitations, and Future前景(2023年12月7日)(未发表的手稿),https://www.semanticscholar.org/paper/large-language-models%3a-a-a-comprehensial--comphermiss--compherive--susporment-of-hadi-tashi/24de-tashi [https://perma.cc/fl y8-zd2p]。3。请参阅OpenAI,GPT-4技术报告(3月1,2024)(未发表的手稿),https://arxiv.org/abs/2303.08774 [https://perma.cc/m5vx-tjlt]。4。“理解”一词在引用中,因为不给这些AI系统化拟人化并不意义地暗示它们具有类似于人类的认知能力。5。6。L. R EV。L. R EV。相反,正如本文强调的那样,LLM AI系统通过统计近似来获得其智能观察结果。确实,他们通常能够产生非常准确和类似人类的反应,但目前,他们很可能不会以与人类认知理解相当或类似的方式“理解”人类语言。因此,在这种情况下,“理解”可以被认为是说这些模型产生的统计输出在鉴于输入的响应范围内,并且经常近似于一个类似位置的人,他们确实理解了认知水平上的输入,会产生响应。即使这种产生响应迅速且显着的人类输出的能力是显着的,但考虑到当前AI模型的工作方式,人们必须注意不要暗示类似人类的认知。OpenAi,介绍ChatGpt:对话的优化语言模型,o Pen AI:B日志(2022年11月30日),https://openai.com/blog/chatgpt [https://perma.cc/8qwz-7nky]。Daniel Schwarcz和Jonathan H. Choi,《律师的AI工具:实用指南》,108 M Inn。h eadnotes 1,1(2023);乔纳森·H·乔(Jonathan H.
Firmanti (2013) 估计,该机构只有 30% 的活动与减灾和预防有关。如果将人员配备作为关注 DRR 的指标,则表明该组织存在严重不平衡。该机构共有 300 名员工,其中 DRR 理事会只有 10 名员工 (Amri, 2013)。但必须注意的是,其他理事会也参与了 DRR 活动,例如后勤理事会。计划在年底前将员工人数增加到 20 人,但即使如此,也存在明显的短缺。员工能力也是一个主要问题。员工对 DRR 的认识水平参差不齐,甚至 DRR 理事会的员工也缺乏足够的认识 (Erawan, 2013)。行政和官僚改革部 (PAN) 施加的限制阻碍了员工人数的增加。PAN 限制进一步招聘,直到现有员工的能力建立起来。缺乏工作空间等运营问题也阻碍了招聘更多员工(Erawan,2013 年)。BNPB 和 BPBD 的员工都缺乏倡导 DRR 的能力。BNPB 对 DRR 实施的关注也是一个问题。BNPB 一直犹豫不决是否将实施责任交给地方政府(Rafliana,2013 年)。BNPB 原本要制定一份文件,概述 DRM 参与者的角色和职责,但他们进展缓慢(Park,2013 年)。这样的文件可能会削弱他们的实施权力,因此并未成为该机构的优先事项。Hillman 和 Sagala(2012 年)指出,BNPB“与其他职能部委在 DRR 方面的互动仍然极其有限”。BNPB 认识到与高级部委和拥有专业技能的部门(如公共工程部和卫生部)协调的重要性,但与其他部委和机构的协调则不那么重要(Rafliana,2013 年)。 BNPB 缺乏协调各部委和机构所需的工具。目前,BNPB 尚无工具来跟踪各部委/机构在 DRR 方面的支出,各部委/机构也没有向 BNPB 报告其在 DRR 方面的活动(Park,2013 年)。正如 HFA 进度报告中所述,BNPB“严重缺乏所需的设施和基础设施”(BNPB,2011 年)。BNPB 在领导协调工作时面临的一个问题是,它对其他部委缺乏权威。将该机构定位在与各部委相同的级别有助于提升该机构的重要性,并确保其职责不受特定部委的控制,就像之前的 Bakornas PBP 机构一样(UNDP,2009b)。然而,BNPB 目前被视为三级政府机构,落后于长期存在的一级部委(如公共工程部)和二级部委(如贸易部)(Hadi,2013 年)。这使得印度国家银行协调各部委的职责更加困难。Williams (2011) 指出,既有关系和工作结构的阻力可能会成为 DRR 改革和跨部门合作的障碍。一些部委/部门机构不愿接受 BNPB 的协调,这显然是其中的明显表现。理论上,BNPB 指导委员会的组成(见第 3.2.1 节,第 33 页)应由来自主要部委、军队和警察的代表组成,以提供强有力的
Sandip Harimkar,博士——教授,Albert H. Nelson,Jr. 主席兼系主任 机械与航空航天工程系主任,Donald 和 Cathey Humphrey 捐赠主席:Hanchen Huang,博士 俄勒冈州立大学塔尔萨分校教授兼副院长,Helmerich 先进技术研究中心主任,俄克拉荷马州 EPSCOR 办公室主任兼 Helmerich 捐赠主席:Raman P. Singh,博士 先进材料摄政教授兼 Herrington 主席:Don A. Lucca,博士,Drhc,CMfgE 摄政教授兼 OG&E 能源技术主席:JD Spitler,博士,PE 摄政教授,Williams 主席兼俄克拉荷马航空航天研究与教育研究所所长:Jamey D. Jacob,博士,PE 教授,Noble 基金会主席兼 NASA 俄克拉荷马州空间赠款联盟 /EPSCoR 主任:Andrew S. Arena,Jr.,博士 教授,Van Weathers 主席兼 Zink 中心主任:Dan Fisher,博士,PE 教授: Brian R. Elbing,博士;Afshin J. Ghajar,博士,PE(名誉);James K. Good,博士,PE(名誉);Lawrence L. Hoberock,博士,PE(名誉);David G. Lilley,博士,DSc,PE(名誉);Richard L. Lowery,博士,PE(名誉);Christopher E. Price,博士,PE(名誉);Gary E. Young,博士,PE(名誉) 副教授、Carol M. Leonard 教授职位和综合建筑系统中心主任:Craig Bradshaw,博士 副教授:Aaron Alexander,博士(兼职);Aurelie Azoug,博士;Christian Bach,博士;He Bai,博士;Frank W. Chambers,博士,PE(名誉);Imraan Faruque,博士;Jay C. Hanan,博士;Kaan Kalkan,博士;James M. Manimala;Kurt P. Rouser,博士;Khaled A. Sallam,博士;阿尔温德·桑塔纳克里希南博士;王硕道,博士;助理教授:Jacob Bair,博士;尼科莱塔·法拉博士;阿塔努·哈尔德博士;杰罗姆·豪塞尔博士;库尔萨特·卡拉博士;李思成,博士;赫曼斯·曼朱纳塔博士;阿德希尔·莫法塔哈里博士;普兰贾·诺蒂亚尔博士;哈迪·努里博士;瑞安·C·保罗博士;奇特拉斯·普拉萨德博士;里泰什·萨尚博士;赵伟,博士 讲师:Alyssa Avery,博士(研究助理教授);格斯·阿泽维多(Gus Azevedo)博士(研究助理教授); Joseph P. Conner, Jr.(教学副教授); Ronald D. Delahoussaye,博士(荣誉退休); Ben Loh,博士(研究助理教授); Ehsan Moallem,博士(教学副教授); Laura Southard(教学副教授)研究教授兼新产品开发中心主任:Robert M. Taylor,博士,PE
绵羊。 这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。 因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。 除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。 超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。 早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。 然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。 值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。绵羊。这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。例如,已证明在KSOM或CZB培养基中培养小鼠胚胎(250 - 275 MOSM)可以抵御两细胞停滞(Chatot等,1990; Lawitts and Biggers,1991; 1993; 1993; Hadi等,2005)。当受外部条件干扰时,细胞体积控制的迅速恢复是通过Na + /H +交换器NHE1和HCO 3 + /Cl- -Chressanger AE2的激活来介导的,该E2调节Na +和Cl-的细胞内浓度。尽管如此,至关重要的是避免过度高离子浓度,这可能破坏正常的细胞生理和生化过程。Subsequently, preimplantation embryos and oocytes reactivate speci fi c organic osmolyte channels to internalize uncharged osmolytes, replacing inorganic ions and ensuring that cells maintain normal physiological and biochemical processes ( Alper, 2009 ; Donowitz et al., 2013 ; Nakajima et al., 2013 ; Tscherner et al., 2021)。对小鼠卵母细胞中的细胞体积调节机制的研究表明,编码Gly Transporter的SLC6A9的特定缺失消除了植入前胚胎中的GLY转运及其对催眠应激的能力(Tscherner等人,2023)。这些发现强调了对哺乳动物卵母细胞和植入前胚胎的健康发展进行精确细胞体积调节的必要性。gly是蛋白质和核酸合成中必不可少的前体,这对于快速细胞增殖至关重要(Redel等,2016; Alves等,2019)。据报道,Gly是猪卵泡液中最丰富的氨基酸(Hong and Lee,2007),这表明Gly可能是在体外改善卵母细胞成熟的重要因素。虽然精确的机制仍有待完全阐明,但新出现的证据表明,Gly作为牛胚胎和小鼠卵母细胞发展中的有机渗透剂的重要作用(Zhou等,2013; Herrick et al。
编辑委员会博士Mustafa Necmiİlhan博士 - 加兹大学 - Özlemçakir博士 - DokuzEylül大学协会。MehmetMerveÖzaydın-AnkaraHacıBayramVeli University Assoc。
