我的阅读 六年级小学向学生提出的有关文本的问题(口头或书面)必须是不同类型的,以便让学生在回答之前进行思考。这些必须唤醒和培养批判意识(从逻辑上讲,它们必须与学生的年龄相符)。因此,对于每次阅读我们都会问这些类型的问题:a)字面理解问题:这些问题涉及识别和记住文本中出现的事实。 b) 需要做出推断的问题:它们允许使用文中解释的数据以及个人经验和直觉来做出猜想或假设。 c) 批判性评价问题:这些问题涉及对文本做出个人判断,评估其相关性或不相关性。问题类型的非常简单的示例阅读月亮夫人月亮夫人在天空中微笑。她戴上了耳环、围巾和帽子。阅读理解问题:
Daniel Sherrod,首席运营官 Georgiana Okoroji,财务规划与分析副总裁 Lauren Gray,首席运营官参谋长 Patti Bayross,执行副总裁、首席信息官 Lisa Bova-Hiatt,法律事务执行副总裁兼总法律顾问 Barbara Brancaccio,首席通讯官 Joseph Courtien,布鲁克林公共住房运营副总裁 Bila Wanjiru,皇后区和史坦顿岛公共住房运营副总裁 Marvin Walton,曼哈顿公共住房运营副总裁 Angela Gadson,布朗克斯公共住房运营副总裁 Calcedonio Bruno,运营分析与合同管理副总裁 Alfred Ferguson,废物管理和病虫害控制副总裁 Brian Honan,政府间关系办公室副总裁 Vilma Huertas,主席特别顾问 Kerri Jew,执行副总裁、首席行政官 Jorge Llano,首席信息安全官 Joey Koch,参谋长 Annika Lescott,财务执行副总裁兼首席财务官 Steven Lovci,资本项目执行副总裁 Lakesha Miller,租赁住房执行副总裁 Patrick O'Hagan,环境健康与安全副总裁 Sideya Sherman,社区参与与合作执行副总裁 Brian Honan,政府间关系办公室副总裁 Eva Trimble,战略与创新执行副总裁 Brad Greenburg,首席合规官 Sergio Paneque,首席采购官 Shaan Mavani,首席资产与资本管理官
匿名人士、Toby Baxendale、Robert Blumen、Tobin Campbell、John P. Cochran 博士、John Cooke、Kerry E. Cutter、D. Allen 和 Sandra Dalton、Rosemary D'Augusta (Perna Travel)、James V. De Santo (DTL Inc.)、Maino des Granges 船长和夫人、Frank Van Dun、Eric Englund、Charles Ezell、Martin Garfinkel、Thomas E. Gee 先生和夫人、Frank W. Heemstra、Jule R. Herbert, Jr.、L. Charles Hilton, Jr.、Max Hocutt 先生和夫人、Keith A. Homan、Julia Irons、George D. Jacobs 医学博士、Preston W. Keith 博士、Robert N. Kennedy、Richard J. Kossmann 医学博士、David Kramer、Steven R. Krause、John Leger、Arthur L. Loeb、Björn Lundahl、Samuel Medrano 医学博士、 Frederick L. Maier、Douglas Mailly 博士、Steven R. McConnell、Joseph Edward Paul Melville、Dorothy Donnelley Moller 博士、Reed W. Mower、Ron N. Neff、Christopher P. O'Hagan、Stanley E. Porter 夫妇、Thomas H. Reed、James A. Reichert、Michael Robb、Conrad Schneiker、Alvin See、Thomas W. Singleton 夫妇(尼希米基金会)、Carlton M. Smith、Kent Snyder、Geb Sommer、William V. Stephens、Charles Strong、Michael F. Thomas、James Tusty 夫妇、Quinten E. Ward 夫妇、Thomas Winar、Steven Lee Yamshon 博士、Leland L. Young 夫妇、Robert S. Young
匿名,Toby Baxendale,Robert Blumen,Tobin Campbell,John P. Cochran博士,John Cooke博士,John Cooke,Kerry E. Cutter,D。Allen和Sandra Dalton,Rosemary D'Augusta(Perna Travel)(Perna Travel),James V. De Santo(DTL Inc.)和Maino des Granges夫人,Frank Van Dun,Eric Englund,Charles Ezell,Martin Garfinkel,Thomas E. Gee夫妇,Frank W. Heemstra,Jule R. Herbert,Jr.,L。Charles Hilton,Jr。基思(Keith),罗伯特·肯尼迪(Robert N. Kennedy),理查德·科斯曼(Richard J.多萝西·唐纳利·莫勒(Dorothy Donnelley Moller),里德·W·莫尔(Reed W.斯蒂芬斯(Stephens),查尔斯·斯特朗(Charles Strong),迈克尔·托马斯(Michael F.
R 261729Z 5 月 23 日 MID120000164397T FM COMSUBFOR NORFOLK VA TO ALSUBFOR INFO RUOIAAA/DOE 海军反应堆 OFC 华盛顿特区 RUOIAAA/COMSUBLANT NORFOLK VA RUOIAAA/COMSUBPAC PEARL HARBOR HI RUOIAAA/COMNAVPERSCOM MILLINGTON TN RUOIAAA/CTF 88 RUOIAAA/COMSUBFOR NORFOLK VA BT UNCLAS //N01000// MSGID/GENADMIN/COMSUBFOR/-/MAY// SUBJ/FY24 潜艇指挥官/执行官选拔// RMKS/1。FY24 潜艇指挥官和执行官选拔委员会于 2023 年 5 月 22 日召开会议。委员会由一名潜艇旗舰军官和 12 名潜艇主要指挥官和主要指挥官后上尉组成。2.以下军官被选为潜艇指挥官。ALLEN GARRETT NOLAN ARDITO ANTHONY SEBASTIAN BACON COLBY TYLER BRAUER DANIEL OTTO BURNEY DEREK ALAN CATES JACOB ROY DILLARD CHASE HAGAN FISHER MATTHEW RESSLER FRITTS MICHAEL WAYNE GOODWIN DANIEL WILSON GRUNDT RYAN MICHAEL HARTSOG JOHN JOSEPH HAUBOLD KYLE THOMAS JACK CHRISTOPHER REYMAN JOHNSON KYLE AARON JUSKIEWICZ BRIAN C MCCALL VINCENT MORETTI MEEK JOSHUA DAVID RICHARDSON WILLIAM A ROSE MICHAEL A STINSON ERIC ANDREW SUNDAY ERIK B SWEZEY MATTHEW MICHAEL TAWEEL DAVID K VANDENENGEL杰弗里·埃里克·维拉迪·尼古拉斯·弗雷德里克·威尔伯·克里斯托弗 R 3。以下军官被选为潜艇指挥官(潜艇支援)。ALI RICHARD A BRADEN MATTHEW RAY BRIDWELL MATHEW CAMP DAVID MATTHEW CHESTER JOHN J JR COLEMAN JOHN WALTER III DOLAN CHRISTOPHER RAYMOND FICKLING DANIAL L GEORGE EKON A GOELLER JASON A JONES BENJAMIN KYLE KAPADIA FARROKH K KIRKPATRICK JUSTIN PIERCE LAIL JOSHUA K LAWRENCE ANDREW JAMES LEE ROBERT VINCENT LEGARE BRIAN LUDWIG JOSHUA MARTIN JONATHAN REESE MCCRIGHT JOSHUA Q MERDES JOSHUA W MISCHLER GREGORY ALLAN SEEBODE JOHN HENRY SHRADER PHILIP BRENT
摘要 当今,无论是在印度尼西亚等发展中国家还是在发达国家,许多飞行事故大多是由于缺乏严格的安全改进措施以及每个地区的航班计划过多造成的。飞机事故与支持飞行运营和飞行性能的硬件、软件、环境和人员密切相关。本研究旨在回顾有关硬件、软件、环境和人员(飞行员)因素对整体飞行性能影响的文献。希望本文献研究的结果可以为克服飞机事故和整体飞行性能的原因提供解决方案。本研究采用定性方法,分析了 23 种与软件相关的期刊文献,例如法规、程序和公司政策计划对航空性能的影响。分析与硬件(如飞机和支持设备)与飞行性能以及环境影响(如天气、温度、噪音、振动和压力)对飞行性能和人对飞行性能的影响的关系相关的期刊文献。本研究发现软件、硬件、环境和人员因素与飞机飞行员的表现之间存在显著相关性。根据这些发现,预计航空公司可以更加关注硬件、软件、环境和人员(飞行员),通过提高飞机飞行员的表现来确保飞行安全。关键词 硬件、软件、环境、人员、性能和小型评论方法 1。介绍 许多飞机失事问题的发生都是因为飞机本身或操作飞机的人员或人为错误造成的问题。Peters 等人。(2006) 表示,人为错误可能由于设计和工作程序、政策和工作环境的错误而发生。此外,O'Hagan 等人。(2019) 指出,飞行性能因素与操作飞机时的态势感知变化密切相关。飞机飞行员长时间操作飞机会因缺乏睡眠和疲劳而影响飞机飞行员的表现。在休息期间,可以随时要求飞行员返回工作岗位。经常发生这种情况,飞行员由于缺乏休息时间而精疲力竭,例如缺乏睡眠导致时差、疾病和压力和情绪等心理障碍。可以从飞行员在 RTO 机动期间如何控制飞机看出他的表现。这种能力是飞行员表现的一个指标。保持飞机在跑道中央并执行安全飞行程序的能力是飞行员的表现(Allen 等人,2018 年)。
标题:机载 GSM 作者:Carlos Gonzaga López 主任:Ari Rantala (TAMK 应用科学大学) 日期:2008 年 12 月 15 日 摘要 多年来,航空业一直在寻找一种能够以可承受的价格在机上提供移动通信服务的技术。然而,由于存在许多技术障碍,已广为人知的 GSM 网络难以实现此目的。由于距离地面基站较远,机载移动终端辐射功率较高,可能对航空电子系统造成严重干扰。另一方面,由于 GSM 小区之间切换的频率很高,机载移动终端可能会因需要大量控制信号而降低地面系统的性能。为了解决上述问题,一种被称为车载GSM(GSMOB)的技术解决方案于2005年出现。机载GSMOB系统由一个低功率基站和一个在GSM工作波段发射噪声的相关单元组成。这样,飞机内的噪音水平就会高于地面基站的信号水平,从而阻止终端与这些站同步,并鼓励它们与机载基站同步。通过与机载站同步而不是与地面站同步,移动终端辐射的功率水平大大降低。以下最终项目旨在准备一份文件,概述 GSMOB 系统,该系统已开始由欧洲各大航空公司商业提供。此外,我们不仅处理了纯技术方面的问题,还处理了与现行法规和相关操作程序相关的问题。
标题:飞机上的 GSM 作者:Carlos Gonzaga López 主任:Ari Rantala(TAMK 应用科学大学) 日期:2008 年 12 月 15 日 摘要 多年来,航空业一直在寻找一种允许移动通信的技术飞机上的通信服务价格实惠。然而,一系列的技术障碍使得使用众所周知的 GSM 网络来实现这一目的变得困难。机载移动终端由于距地球基站较远,辐射功率较高,可能对航电系统造成严重干扰。另一方面,鉴于 GSM 小区之间产生的切换频率较高,机载移动终端可能会因需要大量控制信号而降低地面系统的性能。为了解决上述问题,2005年出现了一种被称为车载GSM(GSMOB)的技术解决方案。机载 GSMOB 系统由一个低功耗基站和一个在 GSM 工作频段发射噪声的相关单元组成。这样,飞机内部的噪声水平就会增加到高于地面基站的信号水平,从而阻止终端与所述基站同步,并促使它们与机载基站同步。当与机载站同步而不是与地面站同步时,移动终端辐射的功率水平会大大降低。以下最终项目旨在编写一份文件,提供 GSMOB 系统的全球愿景,该系统已开始由欧洲各地的重要航空公司进行商业化提供。此外,不仅讨论了纯粹的技术问题,还讨论了与现行法规和相关操作程序相关的问题。
i。关于合成生物学与生物多样性之间关系的观点。 div>在会议上产生的信息是墨西哥在合成生物学和生物技术方面最大的机会领域,这是通过现代技术的使用和开发来研究和使用我们的生物多样性。 div>墨西哥的合成生物学必须基于国家生物多样性的可持续使用和保护。 div>合成生物学的最终产物主要是以下三个:1)通过化学合成之前获得BS之前获得的商业活性物质或原理,或者是从植物提取物(例如植物提取物或微生物的种植)中分离出来的。 div>现在,通过合成生物学获得了这些相同的产品,通常包括与合成遗传回路的修改微生物的限制使用。 div>所得产品的使用和商业化已经受到与政府和卫生部门相关的COFEPRI或其他监管实例的调节。 div>微生物在培养和消毒时,并不代表生物多样性的风险。 div>2)当产品本身是具有合成生物学的改良生物时,其目的是将其释放到环境中,这可能是由于植物所需的植物,例如植物和微藻。 div>用BS原理建立生物体时,您可以设计这些生物体以最大程度地降低遗传当前改性生物的风险。 div>这可以通过以顺式贡元的方式进行修饰(与生物体的相同基因的工程而无需插入外源遗传物质),或者与其自然来源相比,插入的基因或序列可以修改并与接收体的遗传序列相比。 div>尽管环境风险必须低于目前的修改生物,但建议通过考虑BS修饰的身体是否是例如本地物种来分析其调节。 div>这些生物可以通过常规的基因工程过程获得3)完全从整个基因组中重新设计的生物。 div>这种情况被期望为将来会发生的事情,最初仅将其包括在科学目的的单细胞生物中,并在受限的环境中培养。 div>在这种情况下,建议研究人员和机构宣布其项目和产品的开放性和透明度。 div>风险委员会可能正在监视这些类型的项目以分析
请在我们身份验证您的情况下等待...2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。 但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。 例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。 Berger,J。2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。Berger,J。一些研究人员提出了各种技术来提出专家判断以告知先前分布的技术。,例如,O'Hagan等。(2006)提供了先前启发的综合指南,包括技术和潜在的陷阱。其他研究的重点是开发使用贝叶斯先验的专家的信念的方法(例如,Johnson等,2010)。此外,还有各种可用的在线资源可以帮助进行贝叶斯分析。例如,Van de Schoot的在线统计培训提供了有关高级统计主题的教程和练习。总的来说,在组织科学中使用贝叶斯方法的使用变得越来越重要,但是它需要仔细考虑先前的分布和启发技术,以确保准确的结果。注意:我已经删除了一些特定的参考,并重点介绍了要点。让我知道您是否希望我保留更多原始文本!van de de Schoot-Hubeek,W.,Hoijtink,H.,Van de Schoot,R.,Zondervan-Zwijnenburg,M。&Lek,K。评估专家判断引发程序,以相关性和应用于贝叶斯分析。客观的贝叶斯分析:对主观贝叶斯分析的案例,批评和个人观点。Brown,L。D.经验贝叶斯和贝叶斯方法的现场测试,用于击球平均赛季预测。Candel,M。J.,Winkens,B。Monte Carlo研究在纵向设计中多级分析中的经验贝叶斯估计值的性能。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。darnieder,W。F.贝叶斯方法依赖数据依赖的先验。&Chen,F。权力先验:具有统计功率计算的理论和应用。Muthen,B。,Asparouhov,T。贝叶斯结构方程建模:使用数据依赖性先验对实体理论的更灵活的表示。Rietbergen,C.,Klugkist,I.,Janssen,K。J.,Moons,K。G.&Hoijtink,H。将历史数据纳入随机治疗试验的分析中,以及基于系统文献搜索和专家精力提示的知识的贝叶斯PTSD-Traigntory分析。van der Linden,W。J.在自适应测试中使用响应时间进行项目选择。Wasserman,L。使用数据依赖性先验对混合模型的渐近推断。请注意,我保留了您的消息的原始语言而不翻译。给定文本:释义此文本:数据(版本V1.0)。Zenodo(2020)。元素Google Scholar Chung,Y.,Gelman,A.,Rabe-Hesketh,S.,Liu,J。&Dorie,V。层次模型中协方差矩阵的点估计值较弱。J.教育。行为。Stat。40,136–157(2015)。Google Scholar Gelman,A.,Jakulin,A.,Pittau,M。G.&Su,Y.-S。 logistic和其他回归模型的弱信息默认分布。ann。应用。Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。 B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。 2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。 am。 Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。am。Stat。3(Clarendon,1961).Seaman III,J。W.,Seaman Jr,J。W.&Stamey,J。D.指定非信息先验的隐藏危险。66,77–84(2012).MathScinet Google Scholar Gelman,A。层次模型中方差参数的先前分布(Browne和Draper对文章的评论)。贝叶斯肛门。1,515–534(2006).MathScinet Math Google Scholar Lambert,P.C.,Sutton,A。J.,Burton,P.R.,Abrams,K。R.&Jones,D。R.含糊不清?对使用Winbugs在MCMC中使用模糊的先验分布的影响的仿真研究。Stat。Med。24,2401–2428(2005)。MathScinetGoogle Scholar Depaoli,S。在不同程度的类别分离的情况下,GMM中的混合类别恢复:频繁主义者与贝叶斯的估计。Psychol。方法18,186–219(2013)。Google Scholar DePaoli,S。&Van de Schoot,R。贝叶斯统计中的透明度和复制:WAMBS-CHECKLIST。Psychol。方法22,240(2017)。本文提供了有关如何在使用贝叶斯统计数据估算模型时如何检查各个点的分步指南。统计建模模型检查中的贝叶斯模型检查和鲁棒性是一种用于评估统计模型准确性的方法。它涉及使用各种诊断工具来检查模型的潜在问题,例如偏见或过度拟合。贝叶斯模型检查是传统模型检查的扩展,将先前的信念纳入分析中。再次。贝叶斯模型检查的关键应用之一是检测先前数据冲突。贝叶斯模型检查近年来变得越来越重要,因为它能够提供对统计模型的更细微理解的能力。它允许研究人员量化数据中包含的信息量,并评估其结论的可靠性。一些研究人员为贝叶斯模型检查技术的发展做出了重大贡献,包括Nott等,Evans和Moshonov,Young and Pettit,Kass和Raftery,Bousquet,Veen和Stoel,以及Nott等。这些研究人员介绍了各种诊断工具和评估先前数据协议和冲突的标准。这会发生在同一数据集的先前信念和数据之间存在差异时。像埃文斯(Evans),莫索诺夫(Moshonov)和杨(Young)这样的研究人员已经开发了使用诸如后验预测分布等指标来量化这一冲突的方法。贝叶斯模型检查也已应用于贝叶斯模型中的可能性推断。像Gelman,Simpson和Betancourt这样的研究人员强调了理解表达先前信念的上下文的重要性。除了其方法论上的意义外,贝叶斯模型检查还在社会科学,医学和金融等领域还采用了实际应用。它可以通过确定统计模型的潜在问题来帮助研究人员和政策制定者做出更明智的决定。在此处给定文章,此处28,319–339(2013).MathScinet Math Google Scholar Rubin,D。B. Bayesian具有合理的频率计算,适用于应用的统计学家。ann。Stat。J.am。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。 Stat。 合作。 85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。Stat。合作。85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。85,398–409(1990)。这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。ifna(1991)。3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。ieee trans。模式肛门。马赫。Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。Intell。6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。J. Chem。物理。21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J.&Roweth,D。Hybrid Monte Carlo。物理。Lett。 J. am。 Stat。 合作。Lett。J.am。Stat。合作。b 195,216–222(1987)。&Wong,W。H.通过数据增强计算后验分布。82,528–540(1987)。 本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。 本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。 元建模,因果推理和社会科学(2017)。Gelman,A。 &Rubin,D。B. 使用多个序列从迭代模拟中推断。 Stat。 SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.82,528–540(1987)。本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。元建模,因果推理和社会科学(2017)。Gelman,A。&Rubin,D。B.使用多个序列从迭代模拟中推断。Stat。SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.SCI。7,457–511(1992)。一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.一般方法用于监测迭代模拟的收敛性。J. Comput。图。Stat。7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。马尔可夫链蒙特卡洛在实践中57,45-58(1996)。(2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。(2017)。关键参考包括Minka(2013),Hoffman等。(2015),Liang等。 Q.(2015),Liang等。Q.Q.新方法利用排序差异,折叠和本地化技术来增强\(\ hat {r} \)的准确性。此外,本综述强调了贝叶斯建模中变异推理方法的重要性,尤其是随机变体,这些变体是大型数据集或复杂模型的流行近似贝叶斯推理方法的基础。(2013),Kingma和BA(2014),Li等。 (2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2013),Kingma和BA(2014),Li等。(2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2008),Forte等。(2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。(2014)。用于回归分析中的稀疏信号。该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J.&Friston,K。J. Neuroimage(2005)。咨询。临床。Google Scholar Smith,M.,Pütz,B。,Auer,D。&Fahrmeir,L。Neuroimage(2003)中还讨论了通过空间贝叶斯变量选择评估大脑活动。Google Scholar此外,检查了Zhang,L。,Guindani,M.,Versace,F。&Vannucci,M。Neuroimage(2014)的时空非参数贝叶斯变量选择模型用于聚类相关时间课程。判断中信息处理的研究采用了各种方法,如Bolt等人的研究中所见,他们探讨了两种戒烟剂在联合使用的有效性,理由是J.Psychol。80,54–65,2012)。在类似的脉中,Billari等。基于贝叶斯范式内的专家评估(人口统计学51,1933–1954,2014)开发了随机人群预测模型。其他研究已经深入研究了暂时的生活变化及其对离婚时间的影响(Fallesen&Breen,人口统计学53,1377-1398,2016)。同时,Hansford等人。分析了美国律师将军在最高法院的政策领域的位置(Pres。螺柱。49,855–869,2019)。此外,研究重点是使用健康行为综合模型来预测限制“自由糖”消耗(Phipps等人,食欲150,104668,2020)。此外,研究还将贝叶斯统计数据引入了健康心理学,并强调了其在该领域的潜在好处(Depaoli等人,Health Psychol。修订版11,248–264,2017)。Psychol。Gen. 142,573–603,2013; Lee,M。D.,J。 数学。Gen. 142,573–603,2013; Lee,M。D.,J。数学。贝叶斯估计的应用已显示在各种情况下取代传统的t检验,包括认知建模和生态研究(Kruschke,J。Exp。Psychol。55,1-7,2011)。此外,层次结构的贝叶斯模型已在生态学中用于建模种群动态和推断环境参数(Royle&Dorazio,生态学的分层建模和推断)。通过包括Gimenez等人在内的各种研究人员的工作进一步开发了这种方法。(在标记人群中建模的人口统计过程中,3)和King等。(贝叶斯分析人群生态学)。研究还研究了贝叶斯方法在生态学中的使用,例如使用汉密尔顿蒙特卡洛(Monnahan等人,方法ECOL。Evol。8,339–348,2017)。贝叶斯对生态学的重要性的重要性已被埃里森(Elison)等研究人员(ecol。Lett。 7,509–520,2004)。 最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。 也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。 Soc。 系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。Lett。7,509–520,2004)。最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。Soc。系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。系列C 57,609–632,2008)。在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。- Dennis等。-McClintock等。总而言之,对判断中信息处理的研究以及贝叶斯统计在各个领域的应用,使人们对这些概念及其对决策和人口建模的影响有了更深入的了解。这些作品涵盖了种群建模的各个方面,包括贝叶斯估计,综合人群模型和遗传关联研究。关键论文包括: - King and Brooks(2008)关于贝叶斯对具有异质性和模型不确定性的封闭种群的估计。(2006)使用生态数据估计密度依赖性,过程噪声和观察误差。(2012)基于多阶段随机步行开发了一个一般的离散时间框架,用于动物运动。-Aeberhard等。(2018)对渔业科学的州空间模型进行了综述。其他值得注意的贡献包括: - Isaac等。(2020)讨论了大规模物种分布模型的数据集成。-McClintock等。(2020)提出了一种使用隐藏的马尔可夫模型来发现生态状态动力学的方法。- King(2014)审查了统计生态及其应用。- Andrieu等。(2010)引入了粒子马尔可夫链蒙特卡洛方法,用于复杂的种群建模。这些研究表明,从人口生存能力分析到遗传关联研究,在理解生态系统中采用的统计技术的多样性,强调了该领域数据整合和高级建模方法的重要性。提出一种利用转移学习以提高数据质量的方法。基因组学,统计和机器学习的交集在理解复杂的生物系统中变得越来越重要。最近的研究探索了多摩智数据集的整合,以发现对人类健康和疾病的新见解。由Argelaguet等人建立了整合多派数据集的框架,该框架采用贝叶斯方法来识别生物学过程的关键因素。该方法已应用于包括单细胞转录组学在内的各个领域,如Yau和Campbell的工作所示,他们使用贝叶斯统计学习来分析大型数据集。研究的另一个领域涉及在英国生物库中对跨树木结构的常规医疗数据进行遗传关联的分析。诸如Stuart和Satija的研究表明,将单细胞分析与基因组学相结合以揭示有关复杂生物系统的新信息的潜力。深层生成模型的发展也促进了单细胞转录组学的进步,如Lopez等人的工作所证明的那样,后者应用了深层生成模型来分析大型数据集。此外,与Wang等人一起,对单细胞转录组学中数据降解和转移学习的研究已显示出令人鼓舞的结果。最近的研究还强调了科学研究中可重复性和公平原则(可访问,可互操作和可重复使用)的重要性。这包括诸如癌症基因组图集和Dryad&Zenodo之类的举措,旨在促进开放研究实践。提出了功能性变分贝叶斯神经网络。机器学习技术(包括变异自动编码器)的应用也在理解复杂的生物系统方面变得越来越重要。正如Paszke等人的评论中所述,变化自动编码器为将基因组学和统计数据与深层生成模型的整合提供了有希望的方法。总体而言,多摩智数据集,机器学习技术和统计分析的进步的整合已经开辟了新的途径,以理解复杂的生物系统并揭示了对人类健康和疾病的新见解。概率建模的最新进展导致了几种将深度学习与贝叶斯推论相结合的技术的发展。该领域的一个关键概念是变异自动编码器(VAE),它通过将其映射到较低维度的空间中来了解输入数据的概率分布。Hinton等人引入的Beta-Vae框架将VAE限制为学习基本的视觉概念。研究人员还探索了贝叶斯方法在神经网络中的应用,例如高斯过程和周期性随机梯度MCMC。例如,尼尔在神经网络上的贝叶斯学习方面的工作突出了神经网络与高斯过程之间的联系。此外,已证明将深层合奏用于预测不确定性估计在各种任务中都是有效的。最近的预印象提出了新的新技术,包括功能变分贝叶斯神经网络和细心的神经过程。后者使用注意机制从输入数据中学习相关特征。res。另一项研究的重点是开发更可扩展和可解释的模型,例如标准化流量和周期性随机梯度MCMC。该领域在理解深度学习的理论基础上,包括神经网络与高斯过程之间的联系,也看到了重大进展。Mackay和Williams的作品为贝叶斯倒退网络提供了一个实用的框架,而Sun等人。总的来说,这些进步有助于我们理解概率建模及其在深度学习中的应用。Hoffman,M。D.&Gelman,A。 No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。 J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。Hoffman,M。D.&Gelman,A。No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. Mach。学习。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。Stat。Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。J.am。Stat。合作。93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。&Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. R. Stat。Soc。系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Google Scholar Ntzoufras,I。使用Winbugs Vol。698(Wiley,2011).Lunn,D。J.,Thomas,A.,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Spiegelhalter,D.,Thomas,A。,Best,N。&Lunn,D。OpenBugs用户手册版本3.2.3。OpenBugs(2014).Plummer,M。Jags:使用Gibbs采样的贝叶斯图形模型分析程序。proc。第三国际统计计算的国际研讨会124,1-10(2003)。Google Scholar Plummer,M。Rjags:使用MCMC的贝叶斯图形模型。r软件包版本,4(6)(2016).Salvatier,J.,Wiecki,T。V.&Fonnesbeck,C。使用Pymc3在Python中进行概率编程。peerj Comput。SCI。 2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。SCI。2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。2,E55(2016)。Google Scholar de Valpine,P。等。与模型的编程:编写敏捷的通用模型结构的统计算法。J. Comput。图。Stat.s 26, 403–413 (2017).MathSciNet Google Scholar Bayesian analysis software JASP version 0.14 available for computer use (2020) Lindgren F & Rue H used R-INLA for Bayesian spatial modeling in a Stats journal article (2015) Vanhatalo et al's GPstuff allowed Bayesian Gaussian process modeling with Machine Learning Res articles (2013) Blaxter gave research methods in他的2010年McGraw-Hill教育书《如何进行研究》 BetanCourt在Github上创建了一个原则上的贝叶斯工作流程,主张最佳实践(2020)Veen&Schoot使用了对英超联赛数据的后验预测检查,并在OSF(2020年)上发布了它,并在Kramer&Bosman(2020)Kramer&Bosman在Kramer&Bosman在Kramersship Sumpership Summerschool inter Smixship Summershood prosentie in Utrech Torne in utrecht in of to inty介绍(2019年),UTRECHINE(2019年)(2019年)(2019年)(2019年)(2019年)(2019年)(2019年) Acta Math匈牙利文章(1955)Lesaffre&Lawson在2012年Wiley Publication撰写了一种新的公理概率理论(1955年),Hoijtink等人使用了贝叶斯评估,用于认知诊断评估,发表在Psych Methods In In In Psych Methods Journal(2014)