Arbelaez,J。D.,Dwiyanti,M。S.,Tandayu,E.,Llantada,K.,Jarana,A.1K-RICA(1K-RICE自定义扩增子)一种基于大米中遗传学和育种应用的新型基因分型SNP分析。米,12,1 - 15。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。 特质渗入项目的系统设计。 理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。 DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。特质渗入项目的系统设计。理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。DNA序列数据的快速而灵活的模拟。基因组研究,19,136 - 142。https:// doi。org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。回到未来:将MAS作为现代植物繁殖的工具。理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A.重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。植物生产科学,20,337 - 352。https://doi.org/10。1080/1343943X.2017.1391705 Collard,B.C. Y.,Gregorio,G。B.,G。B.,Thomson,M。J.,M。J.,R.转移水稻育种:在国际水稻研究所(IRRI)上重新设计灌溉育种管道。作物育种,遗传学和基因组学,1,E190008。https://doi.org/10.20900/cbgg20190008 Dar,M.H.,Zaidi,N。W.,Waza,S.A.,Verulkar,S.B.,S.B.,Ahmed,T.,Singh,P.K. K.,Kathiresan,R.M.,Singh,B.N.,Singh,U.S。,&Ismail,A.M。(2018)。在有利条件下没有收益罚款,为成功采用洪水大米铺平了道路。科学报告,8,9245。B.(2011)。ridge回归和其他用于基因组选择的内核,r tagkage rrblup。植物基因组,4,250 - 255。https://doi.org/10.3835/plantgenome2011.08.0024
Bo-Gyeom Kim 1,148,Gakyung Kim 2,148,Yoshinari Abe 3,Pino Alonso 4,5,6,Stephanie Ameis 7,8,9,Alan Anticevic 10,Paul D. Arnold 11,12,Srinivas Balachander 13,Srinivas Balachander 13,14 Barrachander 14 Barrace,Nuaj Clolo,17,17,八点,17,16。 Ertolín5,21,Jan Carl Beucke 22,23,24,Irene Bollettini 20,Silvia Brem 25,26,Brian P. Brennan 27,28,Jan K. Buite,Calla 23,233,Rosa Calla,33 Ciullo 14,Ana Coelho 40,41,42,Beatriz Couto 40,41,42,Sara Dallaspe 4,Fernia Fernia 4,Sóniaaremin 4 40,41,42。 Hansen 48,49,Gregory L. Hanna 50,Yoshiyuki Hiran,Höxter,39,Höxöter,Marcelo 17。 1,诺伯特·卡特曼222,金曼·米纳(Kimmann Minah),622,凯瑟琳·科赫(Kathrin Koch)64,65,格尔德·克瓦尔(Gerd Kvale)48,66,66,67,68,路易莎·拉扎罗(Luisa Lazaro),5,31,32,33 Martínez,45 73,Yoshitada Masuda 74,Koji Matsumoto 74,Maria Paula Maziero 75,76,JoseM.M.Menchón4,5,6,Luciano Minuzzi 77,78,Pedro Silva Moreira 40,41,79 OTA 38,39,Jose C. Pariente 16,Chris Perriello 81,MariaPicó-Pérez40,41,82,Christopher Pittenger 10,83,84,85,Sara Poletti,20,10,10,10,Reddy Jan and Reddy Jan和van Rooij 86,Yuki Sakai Sakai 80.87,Jouny satso san.87 ITT 90,Zonglin Shen 37,Eiji Shimizu 38.39.91,Venkataram Shivakumar 92,Noam Soreni,男性,94 -95 95,Nuno Sousa 40,41,42 99,100,Philip R. Szeszko 1011,Thia Thia 2013,Thia I. Los 56,Daniela Vecchio 14,Ganesan Venkatasubramanian 13 110,Mojtaba Zarei 111,Qing Zhao 105,Xi Zhu 112,113和Enigma-Ocd工作组*,Paul M. Thompson 56,Willem B. Bruin 104,114,Guido A. Van Wingen 104,11,Pirica,Pirica,Pirica,Pirica,Pirica,Pirica,J.Faras 144,MARM MARN HEUS 144。 SH 45和Jook Cha 1,2✉
特邀演讲 OLIVER GUTFLEISCH (289) 2025 年材料日主题为“能源材料”,苏黎世联邦理工学院,2025 年 5 月 7 日 (288) MRS 研讨会:可持续冷却的固体材料:热量效应和设备,2025 年 MRS 春季会议和展览,美国西雅图,2025 年 4 月 7 日至 11 日 (287) MRS 研讨会:新兴技术中的关键原材料,2025 年 MRS 春季会议和展览,美国西雅图,2025 年 4 月 7 日至 11 日 (286) 绿色能源的可持续磁体,2025 年 TMS 年会磁学和磁性材料进展研讨会,美国内华达州拉斯维加斯,2025 年 3 月 23 日至 27 日 (285) 高性能磁性材料 – Schlüsselwerkstoffe für die Energietransformation ,42. Hagener Symposium 2024 Pulvermetallurgie,哈根,2024 年 11 月 28 日 - 29 日 (284) 用于高效能源、运输和冷却应用的先进磁性材料,Physikalisches Kolloquium,奥格斯堡大学,2024 年 11 月 18 日 (283) 用于高效能源、运输和冷却应用的先进磁性材料,中国科学院物理研究所中关村论坛,北京,2024 年 8 月 27 日 (282) 用于能源转换、传输和冷却应用的磁性材料的磁滞设计,德中磁学研讨会,北京,中国,2024 年 8 月 25 日 (281) 粉末和粉末基加工的 Ni-Mn-Sn 多热 Heusler 合金中的马氏体转变和热效应,Thermag 2024,第 10 届 IIR 热冷却与热材料应用会议,中国包头,2024 年 8 月 21 日至 24 日 (280) 用于柔性传感和执行器的可持续磁性材料,ICM 2024 博洛尼亚,焦点研讨会:磁性结构中的应变、纹理和弯曲,2024 年 7 月 1 日至 5 日 (279) 用于柔性传感和执行器的可持续磁性材料,E-MRS 2024 年春季会议 - 研讨会 R“非常规电子和可持续柔性传感技术的进展”,2024 年 5 月 28 日 (278) 高性能永磁体领域的最新开发,VDA 汽车工业协会,AK 循环经济/AK 电磁兼容,2024 年 5 月 7 日,阿尔策瑙 (277) 永磁体和磁热材料- 从基础到能源应用(由 K. Skokov 博士讲授),第 3 届 EMFL 学校 - 高磁场科学,德累斯顿,2024 年 4 月 15 日 - 19 日(276) 磁性材料宏观和微观功能特性的关联探测(由 A. Aubert 博士讲授),意大利-德国 WE-Heraeus 研讨会“关联材料表征的前沿:样品、技术、仪器和数据管理”,2024 年 4 月 2 日至 4 月 5 日。(275) 电动汽车和风能用永磁体的可持续性:稀土的减少、替代和回收,IRTC 会议 2024 可持续未来的原材料,意大利都灵,2024 年 2 月 21-23 日(274) 磁性材料在能源转型中的作用,第八届意大利磁学协会 (AIMAGN) 会议 Magnet-2024,2024 年 2 月 7-9 日,米兰 (273) 用于利用磁滞冷却循环的多热材料,德累斯顿磁热日,2023 年 11 月 13-14 日 (272) 未来磁铁的可持续性及其应用,磁性材料和应用 2023,英国磁学学会,2023 年 11 月 7-9 日,哈瑙 (271) 电动汽车和风力发电永磁体的可持续性:稀土的减少、替代和回收,acatech - 专题会议“材料 - 有价值的材料 - 原材料。循环材料系统对弹性和可持续原材料供应的贡献”,2023 年 11 月 7 日,慕尼黑 (270) 电动汽车和风力发电用永磁体的可持续性:稀土的减少、替代和回收,第 9 届鲁尔循环经济功能材料研讨会,2023 年 10 月 17 日,杜伊斯堡 (269) 未来永磁体的可持续性及其应用,REPM 2023,英国伯明翰,
Strom,Nora,I。1,2,3,4 *; Gerring,Zachary,F。5,6 *; Galimberti,Marco 7,8 *; Yu,Dongmei 9,10 *; Halvorsen,Matthew,W。11; Abdellaoui,Abdel 12; Rodriguez-Famtenla,克里斯蒂娜13,14; Sealock,Julia,M。15; Bigeli,Tim 16,17;科尔曼(Coleman),乔纳森(Jonathan),R。18,19; Mahjani,Behrang 20,21;索普,杰克逊,G。22,23; BEY,KATHARINA 24;伯顿(Burton),克里斯蒂(Christie),L。25; Luykx,Jurjen,J。26,27; Zai,Gwyneth 28,29; Alemany,Silvia 30,31,32;安德烈,克里斯汀33; Askland,Kathleen,D。34; Banaj,Nerisa 35; Barlassina,克里斯蒂娜36;贝克·尼森(Becker Nissen),朱迪思(Judith)37,38; Bienvenu,O。Joseph39;黑色,唐纳德40; Bloch,Michael,H。41;鲍伯格,朱莉娅3; Børte,Sigrid 42,43,44;博世,罗莎45,46;布雷恩,迈克尔47,48,49; Brennan,Brian,P.33,50;布伦塔尼,海伦娜51; Buxbaum,Joseph,D。20; Bybjerg-Grauholm,乔纳斯52;伯恩(Byrne),恩达(Enda),M。53; Cabana-Dominguez,Judit 30,31,32; Camarena,Beatriz 54; Camarena,Adrian 55; Cappings,Carolina 56,57; Carracedo,Angel 58,59,60;卡萨斯,米格尔61,62;卡瓦利尼,玛丽亚·克里斯蒂娜63; Ciullo,Valentina 35;库克,埃德温(Edwin),H。64;克罗斯比,杰西33,50; Cullen,Bernadette,A。65,66; De Schipper,Elles,J。3; Delormme,理查德67; Djurovic,Srdjan 44,68; Elias,Jason,A。 69,70; Sumtivill,Xavier 71; Falkenstein,Martha,J。 33,50; Fundin,Bengt,T。72;加纳(Lauryn)33;德语,克里斯73;吉伦达(Gironda),克里斯蒂娜(Christina)33;去,费尔南多,S。74; Grados,Marco,A。 134; Ripke,Stephan 135,136,137; Rosário,Maria,C。138; Sampaio,Aline,S。139; Schiele,Miriam,A。 182,183; Gatian,J,M.184,185; Geller,Dan,A。 186,50; Grabe,Hans,J。 111;里奇特(Richter),玛格丽特(Margaret),A。69,70; Sumtivill,Xavier 71; Falkenstein,Martha,J。33,50; Fundin,Bengt,T。72;加纳(Lauryn)33;德语,克里斯73;吉伦达(Gironda),克里斯蒂娜(Christina)33;去,费尔南多,S。74; Grados,Marco,A。134; Ripke,Stephan 135,136,137; Rosário,Maria,C。138; Sampaio,Aline,S。139; Schiele,Miriam,A。182,183; Gatian,J,M.184,185; Geller,Dan,A。 186,50; Grabe,Hans,J。 111;里奇特(Richter),玛格丽特(Margaret),A。182,183; Gatian,J,M.184,185; Geller,Dan,A。186,50; Grabe,Hans,J。 111;里奇特(Richter),玛格丽特(Margaret),A。111;里奇特(Richter),玛格丽特(Margaret),A。75;格罗夫,雅各布4、76、77、78; Guo,Wei 79;哈维克,1月80日,81岁;哈根,克里斯蒂安82,83,84;哈灵顿,凯利85,86; Havdahl,Alexandra 87,88;霍夫勒(Höffler),Cyra,D。68,89,90; Hounie,Ana,G。91;哈克斯,唐纳德92;克里斯蒂娜21岁的霍尔曼; Janecka,Magdalene 93,94; Jenike,Eric 33;卡尔森(Carlsson),埃利诺(Elinor),K。95,96;凯利,卡拉33;克拉沃,朱莉娅1,97; Krasnow,Janice,E。98;克里斯(Crebs),克里斯蒂(Kristi)99;兰格,克里斯托夫100,101; Lanzagorta,Nuria 102;莱维,丹尼尔103,104;城镇,克斯汀105,106; MacCiard,Fabio 107; Maher,Brion 108; Mathes,布列塔尼33;麦克阿瑟(McArthur),埃文(Evonne)109;麦格雷戈,纳撒尼110;朋友和C. 111,112;碧昂斯,桑德拉113; Miguel,圣洁的C. 114; Mulhern,莫琳24;晚上,保罗,圣115; Nurmi,Erika,L。116; O'Connell,Kevin,S。117,118; Osiicki,丽莎119,120;威尔士,老威尔士80,121;帕尔维安,Teemu 122;费德(Feder),南希(Nancy),L。21; Piras,物质35;皮拉斯(Piras),费德里卡(Federica)123; Pottice,Syramy 33; Rabiones,Rabones 124,125,126;拉米雷斯(Ramires),alfreed 127,128,129,130,131;劳赫,斯科特132;到达亚伯拉罕133;谜语,马克,A。187;格林伯格,本杰明,D。188、189、190;汉娜(Hanna),格雷戈里(Gregory),191;希基,伊恩,B。192;幸福,大卫,M。52,76;凯瑟曼(Kathmann),诺伯特(Norbert)1;肯尼迪,詹姆斯29;莱,东丁193;土地,迈克尔21,194;赫拉德,斯蒂芬195,68;勒博耶(Leboyer),马里恩(Marion)196;洛奇纳(Lochner),克里斯汀(Christine)197; McCraken,James,T。116; Medland,Sarah,E。198; Mortenes,Preben,B。216,29; Rosenberg,David,R。217;鲁尔曼,斯蒂芬218;塞缪尔(Jack),F。219; Sadden,Sven 21,20;沙,保罗29; Spalletta,Gianfranco 35,220; Stein,Dan,J。221; Stewart,S。Eve 222,223,224; Storch,Eric,A。140; Skoghhhh,Anne Heidi 141; Seliman,Laura G Selier,G。20; Smit,142年1月; Soler Artis,Marí30,31,32,143;托马斯,劳伦特,F。144、145、146、147; Tifft,Eric 33; Vallada,Homero 148,149;柯克(Nathanial)150,151; Veenstra-Vader Weeels,Jeremy 152,153; Fink,Ninks,N。154;沃克,克里斯托弗,第155页;王,156; Wendland,Jens,R。157; Winsvold,Bandk,S。42,158,159; Yao,阴160;周,悬挂161,162,163; 23DME研究团队73; VA百万退伍军人计划;爱沙尼亚生物库; COGA重新研究团队; ipsypy;亨特撤回团队;北欧撤退团队; Agrawal,Arpaana 164;阿隆索,皮诺165,166,167,168;贝尔比奇,戈茨169; Bucholz,Kathleen,K。170; Book,Cynthia,M.171,21,172; Cath,Danielle 173,174;否认,达米安175; Eapen,Valsam 176,177;埃登伯格,霍华德178; Falkai,彼得179,180; Fernandez,Thomas,V。181; Fyer,Abby,J。76,199,200; Neale,Benjamin,M.201,202; Nicolini,Humberto 203,204; Nordtor,会见205,206;帕托,米歇尔207;帕托,卡洛斯207; Pauls,David,L。50; Piacentini,约翰208;皮滕纳(Pittenner),克里斯托弗(Christoper)209; Postthhuma,Danielle 210,211; Ramos-Qiroga,Josep Antoni 212,213,214,215;拉斯穆斯(Rasmuss),史蒂文(Steven),A。225;奇怪,芭芭拉,E。226,227;毛利里,毛里佐228;佩戴,托马斯229,230; Andreass,Ole,A。231,232; Børglum,Anders,D。4,233,234; Waltza,Susanne 235,236,237; Hveem,克里斯蒂安159,238,239;汉森(Bjaarne),K。240,241;鲁克(Rück),克里斯蒂安(Christian),第3页;马丁,尼古拉斯,G。242;米兰,莉莉99; Mors,Ole 243; Reichborn-Kjen Nerd,Ted 244,245; Ribasés,Marta 30,246,32,143;客户,戈德83,247; Matiax-Cols,David 3; Domsk,Kathharina 248,249; Grünball,Edna 250,236,
为什么加拿大制造的Laribee吉他好? Laribee吉他于1968年在加拿大多伦多开始制造,并于1977年搬到加拿大环太平洋沿岸的不列颠哥伦比亚省维多利亚,创造了我们独特的吉他。声音使用来自高森林的优质云杉和雪松。 当它于 20 世纪 70 年代末传入日本时,其高品质令人惊叹,并获得了想要像 Martin 和 Gibson 那样细腻声音的用户的支持。精美的镶嵌作品是Larrivee吉他的特色之一,是由Gene Larrivee的妻子Wendy创作的。今天十年级的情况仍然如此。 20 世纪 70 年代末,包括他的妻子 Wendy 在内的 8 名工匠每月生产约 30 瓶葡萄酒。 这一时期的吉他据说是Laribee的黄金时代,抵达日本的少数10级吉他售价超过了Martin的D-45。我想可以说,这为Somogi这样的手工吉他今天被日本乐迷所接受奠定了基础。 除了产品的质量和声音的质量之外,还应该考虑民族主义的方面。虽然他们的销量不如Martin和Gibson,但他们很早就在努力表达自己的加拿大特色,并且一直讲究在加拿大生产产品。他们融入了当时不符合美国时尚的东西,例如“木质装订”、“制作精美的玫瑰花饰”、“透明护板”和“具有欧洲文艺复兴风格的镶嵌设计”。这种叛逆精神吸引了那些厌倦了美国文化消极方面(例如越南战争和全球化)的人们。有一个轶事,在吉他发展的早期,一位美国自由主义音乐家在听到有关Laribee吉他的谣言后,在多伦多的街道上徘徊,寻找一把Laribee吉他。 2001 年 9 月,Larrivee 搬迁至加利福尼亚州的一家新工厂,以进一步扩张。由于美国市场是他们最大的客户,该公司自然希望降低出口成本。然而,这让粉丝们非常失望,他们认为这是一把值得骄傲的加拿大吉他,而不是前面提到的美国吉他,这一事实是有意义的。日本粉丝也是如此。如果您想要一把来自美国西海岸的吉他,泰勒吉他就足够了。未能立即提高加州工厂的质量也增加了现有粉丝的失望。 目前,创始人吉恩·拉里维(Gene Larrivee)、他的妻子温迪(Wendy)、次子马修(Matthew)和女儿克里斯汀(Christine)在加利福尼亚州的一家工厂工作。长子吉恩·拉里维 (Gene Larrivee Jr.) 负责加拿大温哥华的工厂。独自留在加拿大的他对于在工厂度过的时光有何感想? 我无从了解他个人的挣扎,但他回应了我的评论“加拿大制造的10级吉他很好”,并为《LAST GUITAR》的开场制作了一把吉他,我不禁认为有。这不仅仅是简单地接受请求。熟练的工匠在一条单独的生产线上工作。 是的,我想他想证明这一点。自豪地在加拿大制造。第一批已经到了。使用温迪的镶嵌物,图案为留在加拿大的阿拉丁和神灯精灵,以及 AAA 级核心。
使用上述协议。瑞典印度尼西亚村庄的肖像小企业和企业家,也称为晶体管 mos。随着用户输入的字符逐个字符地出现在所有用户屏幕上,brown 和 woolley 消息发布了基于网络的 talkomatic 版本,通过超链接和 URL 链接。最后,他们确定的所有标准成为了新协议开发的先驱,该协议现在被称为 tcpip 传输控制协议互联网协议,通过超链接和 url 连接。Knnen sich auch die gebhren ndern,dass 文章 vor ort abgeholt werden knnen。
