双钙钛矿卤化物是可再生能源生产的有前途的材料,满足解决能源稀缺问题的标准。因此,研究这些卤化物可能对光电和太阳能电池应用有用。在这项研究中,我们使用全电位线性线性的增强平面波(FP-LAPW)方法,使用密度功能理论计算,研究了2 agircl 6(a = cs,rb,k)的结构,机械,热力学,电子和光学特性,以评估其适用于renewability的适用性,并使用全电位线性的增强平面波(FP-lapw)方法来计算。金匠公差因子,八面体因子和新的公差因子已经证实了预测化合物的立方稳定性。我们还通过计算形成焓,结合能和声子分散曲线来验证这些化合物的热力学稳定性。此外,对刚度常数的Born-huang稳定性要求证实了标题化合物的机械稳定性。为了预测准确的光电特性,我们采用了TB-MBJ电位。电子带结构的计算表明,标题为halides的直接带隙半导体性质,值分别为1.43 eV,1.50 eV和1.55 eV,分别为CS 2 AGIRCL 6,RB 2 AGIRCL 6和K 2 AGIRCL 6。此外,所有这些化合物都显示出非常低的有效电子质量,表明它们的高载体迁移率可能。这些化合物的光电导率和吸收光谱验证了我们的条带结构结果的准确性。此外,2 AGIRCL 6(A = CS,RB,K)化合物的光学性质表现出非常低的反射率和出色的光吸收系数(10 5 cm -1)在可见光光谱中,表明它们作为太阳能电池中吸收层的适合性。
低维杂交金属卤化物正在成为一种高度有希望的单组分发射材料,用于其自我捕获的激子(STES)的独特宽带发射。尽管在这些金属卤化物的发展方面取得了长足的进步,但仍有许多挑战需要解决对结构 - 专业关系的更好的基本了解,并意识到这类材料的全部潜力。在此,通过压力调节,在瓦楞1D杂交金属卤化物C 5 n 2 H 16 Pb 2 Br 6中实现了接近100%的光致发光量子量产率(PLQY),该结构具有高度扭曲的结构,初始PLQ为10%。压缩减少了Ste状态和基态之间的重叠,从而导致抑制声子辅助的非辐射衰减。PL进化被系统地证明是由压力调节的激子 - Phonon耦合控制的,可以使用Huang-Rhys因子s进行量化。Detailed studies of the S -PLQY relation for a series of 1D hybrid metal halides (C 5 N 2 H 16 Pb 2 Br 6 , C 4 N 2 H 14 PbBr 4 , C 6 N 2 H 16 PbBr 4 , and (C 6 N 2 H 16 ) 3 Pb 2 Br 10 ) reveal a quantitative structure–property relationship that regulating S factor toward 28 leads to the maximum emission.
烷烃:术语,双键(乙烯)的结构,几何异构主义,制备方法,物理性质,化学反应 - 添加氢。卤素,水,氢化氢(Markownikov的添加和过氧化物效应)。臭氧溶解,氧化,亲电的机理。Alkynes: Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of hydrogen, halogens, hydrogen halides and water, Aromatic hydrocarbons introduction, IUPAC nomenclature, Benzene resonance, aromaticity, chemical properties, mechanism of electrophilic substitution-nitration, sulphonation, halogenations弗里德尔·克拉特(Friedel Craft)的烷基化和酰化,官能团在单声道中取代苯的指令。
脂肪族烃:烷烃 - 命名法、异构现象、构象(仅乙烷)、物理性质、化学反应(包括卤化、燃烧和热解的自由基机理)。烯烃 - 命名法、双键(乙烯)结构、几何异构现象、物理性质、制备方法、化学反应:氢、卤素、水、氢卤化物(马尔可夫尼科夫加成和过氧化物效应)的加成、臭氧分解、氧化、亲电加成机理。炔烃 - 命名法、三键(乙炔)结构、物理性质、制备方法、化学反应:炔烃的酸性、氢、卤素、氢卤化物和水的加成反应。芳香烃:简介、IUPAC 命名法、苯:共振、芳香性、化学性质:亲电取代机理。硝化、磺化、卤化、Friedel Craft烷基化和酰化、单取代苯中功能团的指导影响。致癌性和毒性。
• 继续研究由铝和铁卤化物组成的熔融盐 • 研究和开发 IL 和 WISE 中的铝氧化还原电化学和沉积 • 继续开发新型过渡金属双功能电催化剂 • 先进的“流动”空气阴极工程和设计,便于气体渗透
PFBS 盐;磺酰卤;磺烷基/烯基/芳基酯,磺酰胺;砜和含有 PFBS 部分的侧链氟化聚合物。全氟丁烷亚磺酸也是 PFBS 的前体,可通过氧化生成所需的磺酸基团
1。T. P. Das和E. L. Hahn,核四极共振光谱,1958年2。William L O W,固体中的顺磁共振,1960年3。A.A. Maradudin,E。W。Montroll,G。H。Weiss和I. P. Ipatova,谐波近似中的晶格动力学理论,第二版,1971年4。Albert C. Beer,半导体中的驱动磁效应,1963年5。罗伯特·诺克斯(Robert S.S. amelinckx,直接观察错位,1964 7。James W. Corbett,《半导体和金属的电子辐射损伤》,1966年8。Jordan J. Markham,Alkali Halides的F-Centers,1966 9. Esther M. Conwell,《半导体中的高场运输》,1967年10。 C. B. Duke,固体中的隧道,1969年11月。 M. Cardona,调制光谱,1969年12。 A. A. Abrikosov,《正常金属理论简介》,1972年13。 P. M. Platzman和P. A. Wolff,固态等离子体中的波和相互作用,1973年14。 L. Liebert(客座编辑),液晶,1978年15。 Robert M. White和Theodore H. Geballe,固体中的远程顺序,1979年Jordan J. Markham,Alkali Halides的F-Centers,1966 9.Esther M. Conwell,《半导体中的高场运输》,1967年10。C. B. Duke,固体中的隧道,1969年11月。M. Cardona,调制光谱,1969年12。A.A. Abrikosov,《正常金属理论简介》,1972年13。P. M. Platzman和P. A. Wolff,固态等离子体中的波和相互作用,1973年14。L. Liebert(客座编辑),液晶,1978年15。Robert M. White和Theodore H. Geballe,固体中的远程顺序,1979年Robert M. White和Theodore H. Geballe,固体中的远程顺序,1979年
目的:膜生物反应器(MBR)系统被广泛用于废水处理,但膜结垢仍然是一个主要挑战。本研究旨在比较陶瓷膜在两个操作模式(例如侧面和淹没)中的结垢行为和过滤性能。方法:评估了物理和化学清洁对去除结垢和过滤性能的影响。测量了关键参数,例如结垢速率,细胞外聚合物(EPS)浓度和化学氧需求(COD)去除效率。傅立叶转换红外光谱(FTIR)用于识别膜表面上的结垢成分。结果:与侧流MBR相比,淹没的MBR表现出更高的总结垢(93.6%)(82.3%),可逆犯规速率分别为50.9%和56.2%,而不可逆转的结垢率分别为42.7%和26.3%。EPS水平从淹没的MBR中的255 mg/GVS降至120,而侧流MBR中的65个降低。与淹没的MBR相比,侧流MBR的COD去除效率(88%)更高(82%)。FTIR分析揭示了膜蛋糕层上的结垢成分,例如腐殖酸,多糖,卤化物和烷基卤化物,有助于孔隙阻塞和蛋糕形成。结论:该研究表明,侧流MBR在降低和增强过滤性能方面的表现优于淹没MBR,强调了配置和清洁策略在优化陶瓷膜应用中用于废水处理的重要性。
计算结果表明,电子催化策略显着降低了将N 2转换为AZO化合物的活化能。与非催化反应相比,该反应需要3.44 eV(在正常条件下几乎不可能),电子催化的途径将活化能降低至仅为0.14 eV,从而使反应在动力学上可行。此外,该策略表现出广泛的适用性,扩展到偶氮合成超出各种芳基卤化物和亲核芳香族化合物,为合成高价值增添化学物质的有效方法提供了有效的方法。
过量卤化铵作为成分添加剂被广泛用于钙钛矿发光二极管 (PeLED),旨在通过控制晶体度和钝化缺陷来实现高性能。然而,对于过量有机铵成分是否会影响薄膜的物理/电学性质以及由此导致的器件不稳定性,我们仍然缺乏深入了解。本文指出了在具有过量卤化铵的高效甲脒铅碘化物 (FAPbI 3 ) 基 PeLED 中性能和稳定性之间的权衡,并探索了其潜在机制。系统的实验和理论研究表明,过量卤化盐诱导的离子掺杂极大地改变了 PeLED 的性质(例如,载流子注入、场相关离子漂移、缺陷物理和相稳定性)。证明了表面清洁辅助交联策略可以消除成分调制的不利影响并在不牺牲效率的情况下提高操作稳定性,同时实现 23.6% 的高效率、964 W sr − 1 m − 2 的高辐射度(基于 FAPbI 3 的 PeLED 的最高值)和 106.1 小时的长寿命在大直流密度(100 mA cm − 2)下。研究结果揭示了过量卤化物盐与器件性能之间的重要联系,为合理设计稳定、明亮、高效的 PeLED 提供了指导。