原文发表于:李敏;王英;洛佩兹-纳兰霍,卡洛斯;胡翔;雷耶斯,罗纳尔多·塞萨尔·加西亚;帕兹-利纳雷斯,德雷尔; Areces-Gonzalez,Ariosky;哈米德(Hamid),艾尼·伊斯玛法伊鲁斯·阿卜杜勒(Aini Ismafairus埃文斯,艾伦 C;萨沃斯蒂亚诺夫,亚历山大 N;卡尔扎达——雷耶斯,安娜;维尔林格,阿诺;托邦-金特罗,卡洛斯 A;加西亚-阿古斯丁,黛西;姚德忠;董莉;奥伯特-巴斯克斯,爱德华多;雷扎,法鲁克; Razzaq,Fuleah Abdul;奥马尔,哈齐姆;阿卜杜拉,贾夫里·马林;加勒(Galler),Janina R;奥乔亚-戈麦斯,约翰 F;普里切普,莱斯利 S;加兰-加西亚,利迪策;莫拉莱斯-查孔,莉莉亚;瓦尔德斯-索萨,米切尔 J;特伦德尔,马吕斯; Zulkifly,Mohd Faizal Mohd;阿卜杜勒·拉赫曼,穆罕默德·里达·宾;兰格,尼古拉斯;等人(2022 年)。协调多国 qEEG 规范(HarMNqEEG)。神经影像学,256:119190。 DOI:https://doi.org/10.1016/j.neuroimage.2022.119190
本评论探讨了“跨境采购挑战:协调国际供应链法规”,该书全面分析了国际采购系统的复杂性以及全球供应链中监管协调的必要性。本书探讨了当前采购框架的碎片化性质及其对国际贸易和商业运营的影响。作者分析了推动各国监管差异的政治、经济和制度因素,批评了保护主义倾向和不同的制度能力如何阻碍有效的跨境采购。该书研究了区域贸易协定和国际框架(如世界贸易组织的《政府采购协定》)的作用,同时强调了它们在实现全面监管协调方面的局限性。本书探讨了政府和企业在应对多种监管制度时面临的运营挑战,特别关注对中小企业的影响。它探讨了电子采购平台和区块链等数字技术如何简化流程和提高透明度,同时强调单靠技术无法解决根本的治理挑战。作者研究了跨境采购中的执法和合规问题,强调了各国机构能力的差异如何造成漏洞和合规挑战。本书分析了国际组织在促进监管协调和向能力有限的国家提供技术援助方面的作用。本书特别关注跨境采购的政治经济学,研究了发达国家和发展中国家在制定监管框架方面的权力动态。本书提倡采取更具包容性的监管协调方法,积极让发展中国家参与决策过程。本书最后探讨了协调的采购法规如何有助于实现经济复原力、可持续发展和道德商业实践等更广泛的目标。它既是对当前挑战的批判性评估,也是实现更具凝聚力的全球采购体系的路线图。
二次谐波生成:半导体电介质接口的强大非破坏性表征技术 Irina Ionica a 、Dimitrios Damianos a 、Anne Kaminski-Cachopo a 、Danièle Blanc-Pélissier b 、Gerard Ghibaudo a 、Sorin Cristoloveanu a 、Lionel Bastard a 、Aude Bouchard a 、Xavier Mescot a、Martine Gri a、Ming Lei c、Brian Larzelere c 和 Guy Vitrant aa Univ。格勒诺布尔阿尔卑斯,CNRS,格勒诺布尔-INP,IMEP-LAHC,38000 格勒诺布尔,法国 b INL-UMR 5270,里昂国立应用科学学院,7 avenue Jean Capelle,69621 维勒班,法国 c FemtoMetrix,1850 East Saint Andrew Place,加利福尼亚州圣安娜 92705,美国。二次谐波产生 (SHG) 被证明是一种非常有前途的介电体-半导体界面表征技术,因为它灵敏、无损,可在晶圆处理的不同阶段直接应用于晶圆。该方法基于非线性光学效应,测量包含介电体-半导体界面处“静态”电场的信号,该信号与氧化物电荷 Q ox 和界面态密度 D it 直接相关。从 SHG 测量中提取 Q ox 和 D it 的一般方法需要 (i) 根据通过经典电学方法获得的参数进行校准和 (ii) 建模以捕捉影响 SHG 信号的光传播现象。在本文中,我们基于对如何利用 SHG 进行半导体电介质表征的最新进展的回顾来讨论这些问题。简介半导体上电介质堆栈在微纳电子、光伏 (1)、图像传感器 (2)、生物化学传感器等许多应用领域的设备中无处不在。在每种情况下,界面的电质量对设备的性能都有很大的影响。通常使用两个参数来确定这种界面的电质量:固定氧化物电荷密度 Q ox 和界面态密度 D it 。大多数时候,这些参数是通过电测量(例如电流、电容、噪声 (3))获取的,然后采用适当的提取方法并在专门制造的测试设备上实施(例如:金属氧化物半导体 - MOS 电容或晶体管)。一些其他方法可以直接在晶圆级实施,而无需任何额外的测试设备制造步骤,例如:半导体的电晕-开尔文特性 (4)、通过光电导或光致发光衰减测量进行的载流子寿命提取 (5)。除了无需任何额外步骤即可直接在晶圆上进行探测的可能性之外,选择最适合的测量方法的标准还包括灵敏度、非破坏性、区分 D it 和 Q ox 的能力、提供高空间分辨率的能力。可以满足所有这些标准的最新技术是二次谐波产生 (SHG) (6),基于非线性光学效应。
在[1,7]中的时间依赖性通过截短的傅立叶膨胀来处理,这使我们能够为每个频率获得单独的线性系统。在那里,提出了有效的求解线性系统的预处理方法,其中预核心是具有区块 - diagonal的,并且是较低的三角形形式。在[2]中使用了完整的两二个块结构的预处理,进一步称为PRESB,在续集中定义。[3]中的研究提供了不同结构的预处理(遮挡型,块 - 三角形和PRESB形式)之间的比较。比较是根据相应预处理矩阵及其数值性能的光谱正确的。数值实验表明,相对于正则化参数的频率范围,问题大小和值,PERB形式的预处理更加健壮。可以在[10]中找到对这些预调节器和一些修改形式的信息。[9]研究中的工作又是块形式形式的另一个预处理,并分析了双重预处理,适合于离散状态的向量形式。在[8]中考虑了(2)的非线性形式,其中为线性化问题提出了完整的两乘两块形式的预处理,可以将其分解和解决,以块 - 二进制预处理的成本,并且相对于问题大小和测试频率的范围是可靠的。
尽管数字健康技术有望改变医疗保健(人们正在持续努力以准确定义这些技术并制定分类法),但它们在临床实践中的应用非常有限,其监管环境仍在发展中,覆盖决策缺乏或不完整 1,2。本反思论文的重点是数字健康技术的一个子集,称为数字医疗设备 (DMD),根据医疗器械法规 (MDR) 和体外诊断医疗器械法规 (IVDR) 的要求进行 CE 标志是获得欧盟营销授权的强制性步骤 3,4。为了在各种护理环境中增加 DMD 的采用,必须了解其全部价值和影响。然而,目前还没有标准化的评估方法或通用语言来帮助解决投资数字健康技术的不确定性。虽然存在一些评估 DMD 和通知报销的框架,但这些框架的范围仍然过于严格,无法为所有 DMD 提供解决方案。例如,缺乏对 AI 的关注,并且供医疗保健专业人员使用的 DMD 通常不在范围内。
光涡流具有通过利用轨道角动量的额外自由度来增加数据容量的巨大潜力。另一方面,各向异性2D材料是对未来综合偏振敏感光子和光电设备的有希望的构建块。在这里,用在超薄2d仙境植物燃料上构图的叉全息图证明了高度各向异性的第三谐波光学涡流束的产生。表明,各向异性非线性涡流束的产生可以独立于叉形方向相对于晶体学方向而实现。此外,2D叉全息图旨在产生具有不同各向异性反应的不同拓扑电荷的多个光学涡旋。这些结果铺平了迈向基于2D材料的各向异性非线性光学设备,用于光子整合电路,光学通信和光学信息处理。
数据质量是一个重要的问题,并且在所有组织中都陷入困境,这些组织使用数据分析来得出智能和明智的业务决策。不幸的是,这是整个行业和领域的,大多数数据源都充满了各种不准确性,使它们不可靠,并且在潜在的风险或危险中更糟。
在快速发展的神经信息学领域,人工智能 (AI) 与神经科学的交叉既带来了前所未有的机遇,也带来了巨大的道德挑战(Ienca 和 Ignatiadis,2020 年;Dubois 等人,2023 年;Parellada 等人,2023 年;Scheinost 等人,2023 年)。随着人工智能技术越来越多地支撑神经科学研究,建立强有力的治理框架至关重要,该框架不仅要与这项研究的雄心勃勃的范围相匹配,而且还要遵守严格的隐私和数据共享要求(Eke 等人,2022 年;Jwa 和 Martinez-Martin,2024 年;Yuste,2023 年;英国政府,2018 年)。本文探讨了协调人工智能治理法规与神经信息学实践的迫切需要,特别关注数据共享和隐私领域。这篇评论文章基于对 4,000 多篇研究文章和 AI 监管文件的全面分析,并引用了 100 多篇关键文章和文件。它对当前的 AI 治理框架以及 AI 与神经信息学交叉领域存在的挑战进行了批判性分析。1
背景观察健康数据科学和信息学(OHDSI)观察性医学结果伙伴关系(OMOP)共同数据模型(CDM)通过将这些不同来源的临床数据进行大规模分析的概念,通过使这些不同的数据模型和共同的辅助数据模型和共同的声音模型进行协调。在多个国家 /地区的多个机构中采用OMOP CDM已使各种疾病领域的跨机构合作有能力产生真实的证据并最终改善患者护理1。为了实现精确医学,它需要将基因组变体整合到CDM中。虽然OHDSI工具和词汇量已经在多个方面开发了,但迄今为止,OMOP词汇的重点是基因组变体(OMOP基因组)的重点,已放置在与癌症临床上相关的基因组变体上。这限制了其他疾病领域和健康人群中精确医学的努力;因此,我们认为改进1)基因组词汇; 2)映射工具对于最大程度地限制此限制很重要。顺便说一句,美国食品和药物管理局(US FDA)已经确定了可互操作基因组数据标准的差距,因此,使用OMOP CDM开发OMOP/GA4GH互操作性框架是战略价值。
背景 异色瓢虫(Harmonia axyridis)是一种体型较大(5-8 毫米)、食欲旺盛的瓢虫,被广泛认为是世界上最具入侵性的昆虫之一。其原生范围是中亚和东亚,但被引入北美和欧洲作为生物防治剂。其传播迅速,现已遍布北美洲、中美洲和南美洲、欧洲和非洲。微卫星研究表明,北美东部的一个入侵种群是入侵欧洲、南美洲和南非的种群的来源(Lombaert et al., 2010)。异色瓢虫于 2003 年首次在英国东南部被记录。自到达后,其传播迅速,现已遍布英国,并已在爱尔兰、奥克尼群岛、设得兰群岛、海峡群岛、锡利群岛和马恩岛被记录在案。其是高度多态性的物种,具有若干种公认的形态。鞘翅颜色范围为黄色、橙色、红色或黑色,带有 0-21 个黑色斑点、4 或 2 个红色/橙色斑点。腿部始终为棕色,腹部为深色,带有红棕色边框。小丑瓢虫是一种杂食性动物,以蚜虫以及软果、花粉、花蜜和许多其他软体昆虫(包括其他瓢虫幼虫)为食。它以成虫越冬,经常出现在成虫聚集的建筑物中。该物种的血淋巴含有高浓度的异丙基甲氧基吡嗪(Al Abassi 等人,1998 年)和哈尔班碱(Nagel 等人,2015 年),并且在受到刺激时很容易自体出血。防御性分泌物具有恶臭,并可能导致染色。此外,它还会叮咬人类(Ramsey & Losey,2012),因此该物种被视为小型家居害虫。 异色瓢虫的传播与其他本地瓢虫物种的急剧下降有关。据信,这是由于异色瓢虫在竞争中胜过其他蚜虫物种以及集团内捕食所致(Majerus et al.,2006)。
