农业创新对于扩大农作物的遗传多样性至关重要,专注于提高产量,对生物和非生物应力因素的耐受性营养价值以及对新环境的适应性,尤其是在响应气候变化方面。利用各种遗传资源,包括在包括局部陆地等基因库中维持的农场多样性和种质,以及次级基因库,也必须变得势在必行。传统品种,陆地和其他未充分利用的种系很少被育种者使用,主要是由于不必要的联系。基因组学工具可以有效地处理这一问题。例如,大米中的“ SD1基因与干旱耐受性QTL之间的遗传联系”是一个显着的繁殖挑战,最近通过标记辅助育种克服了。另一个例子是“ Cimmyt-发现的种子(种子)”计划,该计划使用基因组学工具来大量使用小麦种质库。先进的基因组学工具和技术通过知识丰富为制定育种计划的知识发展提供了有希望的途径。通过识别和融合新等位基因来整合未充分利用的遗传多样性和解锁遗传多样性,可以扩大培养品种的遗传基础。这种方法称为“基因组学辅助杂种”,包括多样性分析,功能基因组学和结构基因组学,以及用于作物改善所需的先进统计工具。拥抱“基因组辅助 - 预育”对于满足全球粮食,燃料和鱼的需求而言至关重要。
佐剂在疫苗和癌症疗法中至关重要,通过各种机制增强了治疗效率。在疫苗中,佐剂传统上是值得放大免疫反应的价值,从而确保了对病原体的强大和持久的保护。在癌症治疗中,佐剂可以通过靶向肿瘤抗原来提高化学疗法或免疫疗法的有效性,从而使癌细胞更容易受到治疗。最近的研究发现了佐剂的新分子水平效应,主要是通过表观遗传机制。表观遗传学包括基因表达中的可遗传修饰,这些修饰不会改变DNA序列,影响诸如DNA甲基化,组蛋白修饰和非编码RNA表达等过程。这些表观遗传变化在调节基因活性,影响免疫途径以及调节免疫反应的强度和持续时间方面起着关键作用。在疫苗或癌症治疗中,了解佐剂与表观遗传调节剂的相互作用如何为在各种医疗领域开发更精确的细胞靶向疗法提供显着潜力。本综述深入研究了佐剂的不断发展的作用及其与表观遗传机制的相互作用。还研究了利用表观遗传变化以增强辅助效率的潜力,并探讨了在治疗环境中表观遗传抑制剂作为辅助剂的新颖使用。
我们使用生成式人工智能从超过 120,000 份企业电话会议记录中提取管理层对其经济前景的预期。总体衡量标准人工智能经济评分可以稳健地预测短期和未来 10 个季度的未来经济指标,例如 GDP 增长、生产和就业。这种预测能力是现有衡量标准(包括调查预测)的增量。此外,行业和公司层面的衡量标准提供了有关特定行业和个别公司活动的宝贵信息。整合管理层对公司、行业和宏观经济状况的预期的构成衡量标准进一步显著提高了对国家和部门 GDP 增长的预测能力和预测范围。我们的研究结果表明,管理层预期对经济活动具有独特的见解,对宏观经济和微观经济决策都有影响。
COVID-19大流行强调了对创新疫苗技术和治疗学的关键需求。分子胶水促进蛋白质蛋白质相互作用的小分子对其在疫苗制剂,癌症药物发育和心血管疾病治疗中的潜在应用引起了重大兴趣。这项全面的综述探讨了疫苗技术的多种景观,从mRNA和蛋白质亚基疫苗到病毒载体和基于核酸的疫苗,并阐明了分子胶水可以提高其效率。此外,它深入研究了癌症药物发育和心血管疾病疗法的新兴领域,强调了分子胶在靶向涉及这些疾病的蛋白质蛋白质相互作用中的作用。通过检查基于分子胶的方法的分子机制,最新进步以及未来的前景,这篇综述提供了对它们在打击感染性疾病,癌症和心血管疾病中的变革潜力的透彻理解。
在以前所未有的数字复杂性为标志的时代中,赛景观景观正在以惊人的速度发展,挑战了传统的防御范式。高级持续威胁(APTS)揭示了常规安全措施中的内在漏洞,并强调了迫切需要对连续,适应性和积极主动的策略,这些策略将人类的洞察力与尖端的AI技术无缝整合在一起。本手稿探讨了代理AI和Frontier AI的融合如何通过重新建立网络框架(例如网络杀戮链),增强威胁性智能过程以及将强大的道德治理嵌入在AU的响应系统中。借鉴了现实世界的数据和前瞻性观点,我们研究了实时监控,自动化事件响应以及永久学习在锻造稳定,动态的防御生态系统中的作用。我们的愿景是将技术创新与坚定不移的道德监督协调,以确保促进AI-Drienden的安全解决方案坚持公平,透明和问责制的核心人类价值,同时反对新兴的网络威胁。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月2日发布。 https://doi.org/10.1101/2025.02.28.640897 doi:Biorxiv Preprint
用于解决复杂物理问题的机器学习(ML)技术的整合越来越被认为是加快模拟的有前途的途径。但是,评估ML衍生的物理模型在工业环境中的采用构成了重大挑战。本竞赛旨在促进创新的ML方法来应对身体挑战,利用我们最近引入的统一评估框架,称为学习工业物理模拟(LIPS)。建立在2023年11月至2024年3月1日举行的初步版本上,该迭代以良好的物理应用为基础的任务为基础:使用我们建议的Airfrans数据集,翼型设计模拟。竞争基于各种标准评估解决方案,包括ML准确性,计算效率,分布外部性能和遵守物理原理。值得注意的是,这项竞争代表了探索ML驱动的替代方法的开创性努力,旨在优化物理模拟中计算效率和辅助性之间的权衡。托管在Codabench平台上,比赛为所有参与解决方案提供了在线培训和评估。