摘要 太阳能树是一种融入太阳能技术的结构,就像树枝一样。太阳能树旨在强调太阳能技术的愿景,该项目的主要目标是引起人们对利用清洁能源的可能性的关注,清洁能源是我们日常生活中的重要方面之一,因为手机已成为不可或缺的元素,因此为手机充电同样重要。鉴于智能手机电池耗尽的速度很快,充电器已成为我们包中最必不可少的物品之一。我们到处旅行都带着它,没有它就活不下去,但当我们在没有电的地方或在长途旅行中没有时间找地方充电时,它总是让我们陷入困境。由于手机和日益恶化的能源问题,我们不得不想出给手机充电和运行低容量设备的方法。这不再局限于思考,而是付诸实践。由于当今时代对艺术和技术方面的重视,太阳能树的形状是经过特别选择的。这个概念的产生是因为树木可以利用阳光进行一种称为“光合作用”的过程,这有助于维持生态系统。太阳能电池以一种可以根据太阳光线入射的角度调整方向的方式固定在树枝上,该结构模仿树枝,逆变器将电池输出电压改变为电池充电所需的量。为了保持这些部件的正确形状,它们被放置在一个代表树根的盒子里。因此,我们有一个便携式充电器,可以在一天中的任何时间使用清洁的可再生能源。此外,这棵树尽可能靠近窗户,以接收尽可能多的阳光。该设计可以以道路和公共区域上的一棵大树的形式实现,以增加美感——手机、笔记本电脑和运行低容量设备。
在西班牙,STR 客人在以农村为主的地区住宿的晚数自 2018 年以来增长了 125%,到 2023 年将超过 260 万晚。这不仅带来了经济效益,还让旅行者体验了当地文化。Airbnb 上 70% 的预订发生在非城市或低密度城市地区,该平台有助于发掘隐藏的瑰宝。例如,2023 年,西班牙的橄榄油旅游业因乡村旅游活动的增加而产生了超过 1.2 亿欧元的当地商业收入。
软件开发中最明显的趋势给组织带来了巨大的压力,迫使他们快速生产出高质量的软件。由于 DevOps 高度重视自动化、协同和持续交付,因此可以将其视为当前软件开发方法的基础。尽管 CI/CD 管道变得更加复杂,并遇到了与之相关的实时决策,但您的工作仍然具有挑战性。本文旨在描述智能 DevOps,在 CI/CD 过程中应用人工智能 (AI) 和机器学习 (ML) 并改进软件交付生命周期。AI 可帮助 DevOps 团队避免重复任务,确定管道故障的原因,更好地控制资源使用情况,并提高管道效率。该研究讨论了 DevOps 流程的 AI 自动化的当前趋势以及采用前景和威胁,并提出了 DevOps 框架中的 AI。基于一组配对的低级案例和高级实验,本研究证明了智能 DevOps 在提高速度、提高稳定性和降低软件交付成本方面的有效性和能力。研究结果将为计划实施基于人工智能的增强/自动化 DevOps 实践的组织提供路线图,并为想要研究这一不断发展的领域未来发展的研究人员提供参考。
1药理学系,L J大学,L J大学,艾哈迈达巴德382210,印度古吉拉特邦; Dr.Dipa.israni@ljku.edu.in(D.K.I. ); mansi.shah_ljip@ljinstitutes.edu.in(M.S.) 2萨拉斯瓦蒂药学学院药理学和药房实践系,甘地纳加尔382355,印度古吉拉特邦; rrneha2910@gmail.com 3印度古吉拉特邦VADODARA的帕鲁尔大学帕鲁尔大学帕鲁尔大学帕鲁尔大学药理学系391760; sonijhanvi4@gmail.com 4 Shree S. bhupen27@gmail.com 5塞尔帕科恩大学药学学院,泰国纳克恩(Nakhon)病原体73000,6药理学和药房实践系,L。M. M.药学学院,Opp。 古吉拉特大学,纳维兰普拉,艾哈迈达巴德380009,印度古吉拉特邦; mehulchorawala@gmail.com 7 Chiang Mai University,Chiang Mai 50200的药学学院,泰国; supachoke.man@cmu.ac.ac.th 8 of Research Administration,Chiang Mai University,Chiang Mai 50200,泰国 *通信:sudarshan.s@cmu.ac.th(S.S.); chuda.c@cmu.ac.th(C.C.)1药理学系,L J大学,L J大学,艾哈迈达巴德382210,印度古吉拉特邦; Dr.Dipa.israni@ljku.edu.in(D.K.I.); mansi.shah_ljip@ljinstitutes.edu.in(M.S.)2萨拉斯瓦蒂药学学院药理学和药房实践系,甘地纳加尔382355,印度古吉拉特邦; rrneha2910@gmail.com 3印度古吉拉特邦VADODARA的帕鲁尔大学帕鲁尔大学帕鲁尔大学帕鲁尔大学药理学系391760; sonijhanvi4@gmail.com 4 Shree S. bhupen27@gmail.com 5塞尔帕科恩大学药学学院,泰国纳克恩(Nakhon)病原体73000,6药理学和药房实践系,L。M. M.药学学院,Opp。古吉拉特大学,纳维兰普拉,艾哈迈达巴德380009,印度古吉拉特邦; mehulchorawala@gmail.com 7 Chiang Mai University,Chiang Mai 50200的药学学院,泰国; supachoke.man@cmu.ac.ac.th 8 of Research Administration,Chiang Mai University,Chiang Mai 50200,泰国 *通信:sudarshan.s@cmu.ac.th(S.S.); chuda.c@cmu.ac.th(C.C.)古吉拉特大学,纳维兰普拉,艾哈迈达巴德380009,印度古吉拉特邦; mehulchorawala@gmail.com 7 Chiang Mai University,Chiang Mai 50200的药学学院,泰国; supachoke.man@cmu.ac.ac.th 8 of Research Administration,Chiang Mai University,Chiang Mai 50200,泰国 *通信:sudarshan.s@cmu.ac.th(S.S.); chuda.c@cmu.ac.th(C.C.)
在智慧城市和可持续发展的时代,越来越强调优化建筑绩效以减少能源消耗,最大程度地减少环境影响并提高建筑项目的整体效率。虽然AutoCAD擅长制定详细的设计计划,但它缺乏基于现实世界变量(例如能源使用,物质可持续性和气候适应性)进行动态优化设计的能力。这是机器学习(ML)与AutoCAD的集成可以提供变革性的好处的地方。通过利用AI的力量,建筑师和工程师可以自动化分析和优化其设计的过程,从而导致更智能,数据驱动的决策。尽管如此,在当代城市环境的背景下,典型的AutoCAD Workflow经常无法满足能源高效,可持续性的建筑设计的越来越多的期望,但仍无法满足其越来越多的期望。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 12 月 4 日发布。;https://doi.org/10.1101/2024.12.03.626601 doi:bioRxiv 预印本
* David Temprano 是西北大学普利兹克法学院的法学博士候选人。他是多元化、公平与包容性创新研究员、包容性法律创业实验室 (ILEL) 的创始人,并担任《西北国际法与商业杂志》的社论和文章编辑。他曾在法学院担任过重要领导职务,包括西北法律与医学学会会长、高科技法律学会联合会长和拉丁裔法学院学生协会会长。他以优异成绩毕业于加州大学伯克利分校,获得社会学和民族研究文学士学位,旨在从事法律、商业、全球见解和社会创新等多元化交叉领域的工作。此外,他还在《西北日报》和《加州日报》上发表了多部作品。电子邮箱:david.temprano@law.northwestern.edu,dtemprano.law@gmail.com。
脂质纳米颗粒的解剖结构 LNP 通常由四种关键成分组成:磷脂、可电离阳离子脂质、胆固醇和聚乙二醇连接 (PEG 化) 脂质(见方框)。与构成每个细胞膜的脂质一样,LNP 包裹并保护其货物。易降解的有效载荷(如 mRNA)受到保护,直到 LNP 能够将其内容物输送到细胞中。LNP 通常是球形的,平均直径在 10 到 1,000 纳米之间,包裹的材料可以包括核酸、蛋白质片段或其他生物有效载荷。人们付出了巨大努力来设计 LNP 组件以与核酸货物兼容。核酸带有多阴离子电荷,这使得它们排斥带负电荷的磷脂。可电离阳离子脂质的开发对于 mRNA-LNP 疫苗至关重要。这些脂质在酸性 pH 下带正电荷,在储存期间包围并包裹核酸。一旦 LNP 被注射并进入 pH 中性的血液,可电离脂质就会恢复中性,这有助于 LNP 逃避免疫检测。颗粒疏水性和正电荷都与免疫反应增强有关。6,7 LNP 通过内吞作用被吸收到细胞中,但它们被隔离在内体中,内体是注定要被破坏的细胞器。然后,可电离脂质在内体的酸性环境中恢复正电荷,最终破坏 LNP 结构并释放细胞内的核酸。8
为了了解人们对生成式人工智能的看法,我们对年收入超过 10 亿美元的 1,100 名高管进行了一项全球调查。我们邀请了公共部门组织和年度预算至少为 5,000 万美元的政府实体参与。这些组织的总部位于 14 个国家/地区:澳大利亚、加拿大、法国、德国、印度、意大利、日本、荷兰、挪威、新加坡、西班牙、瑞典、英国和美国。接受调查的组织涉及 11 个关键行业:航空航天和国防、汽车、消费品、能源和公用事业、金融服务、高科技、制药和医疗保健、工业制造、零售、电信以及公共部门/政府。有关调查样本的更多详细信息,请参阅研究方法。