本论文是 IMS 实验室、波尔多大学和斯伦贝谢研究与生产部门的合作研究。我要感谢所有人的帮助和耐心,使这份手稿得以实现。首先,我要对我的导师 Cristell Ma-neux 和 Yann Deval 表示深深的谢意,感谢他们的持续支持和宝贵指导。特别是,我要向 Cristell 表示最深切和最诚挚的感谢,她为完成这项工作做出了重大贡献。多亏了她从一开始就提供的宝贵和有益的建议,我才能将这项研究推向正确的轨道。我很感激她在我刚开始问最愚蠢的问题时对我如此耐心。在她用红色写的详细修改后,我感觉自己一天天在进步,对此我深表感激。我还要感谢我在斯伦贝谢的导师 Claire Tassin。从我到达的第一天起,她就帮助我融入了公司。在她的协助和热情支持下,我在斯伦贝谢的实验得以尽快完成。她给了我明确的方向,让我可以坚持下去。我真的很感激她总是在我需要帮助的时候出现。在 ASIC 团队中,我要感谢 Mohamed Salim Cherchali 让我熟悉了编写自动测试台的代码行。他非常耐心地直截了当地解释了 Python 的基础知识,为我以后自学奠定了基础。他还教我如何使用斯伦贝谢实验室的仪器进行实验。此外,我还要感谢 Toshihiro Nomura,他总是以详细和及时的方式回答我的小问题。当我的实验装置出现问题时,他是我第一个去找的人。在装置的最初几天,遇到了很多困难和技术问题。Toshi 和 Salim 必须经常在实验室呆到晚上 9 点以后,帮助我找到问题并一起找到解决方案。我们失败了很多次才完成整个装置。多亏了他们知识渊博、热情洋溢的指导,我的测量得以进行,我从他们的实践经验中学到了很多新东西。感谢 IMS 实验室前秘书 Simone Dang Van 和她的丈夫偶尔在周末到他们家,他们家很宽敞,热情欢迎我。他们向我讲解了很多关于法国文化的知识,帮助我从一开始就融入了波尔多的生活。我还要感谢 IMS 实验室的所有朋友,感谢我们一起共进午餐,一起交谈,分享困难,互相鼓励,克服困难。感谢我的越南朋友,他们也是法国不同城市的博士生,他们总是陪在我身边,鼓励和“提醒”我经常锻炼。假期我们一起旅行,想家的时候互相安慰。
ɐ Main Input & Output Circuit Breaker (UL489) ɐ Normally ON and/or Normally OFF Auxiliary Breakers (12 or 24 MAX) (dependng on cabinet size) ɐ Custom Rated KAIC Breakers ɐ 65 KAIC Total System Short Circuit Current Rating ɐ Thermal Runaway Control ɐ Internal or External Maintenance Bypass Switch ɐ High Temperature Batteries ɐ Long Life Battery 20 Year Warranty ɐ Time Delayed Transfer to Battery ɐ带有恒温器控制的加热器带的时间延迟转移
本概况文件概述了美国能源部先进材料和制造技术办公室 (AMMTO) 跨领域高性能材料研究、开发和演示 (RD&D) 投资机会的建议。该概况由下列人员制定:下一代材料与工艺 (NGMP) 恶劣环境材料技术经理 J. Nick Lalena;爱达荷国家实验室 (INL) 代表 Emmanuel Ohene Opare、Gabriel Oiseomoje Ilevbare 和 Anthony Dale Nickens;国家可再生能源实验室 (NREL) 代表 Kerry Rippy 和 Dennice Roberts;橡树岭国家实验室 (ORNL) 代表 William H. Peter、Amit Shyam、Sebastien N. Dryepondt 和 Yarom Polsky;太平洋西北国家实验室 (PNNL) 代表 David W. Gotthold 和 Isabella Johanna van Rooyen;以及 BGS 顾问 Stewart Wilkins。整个部门和这些国家实验室的成员都为该概况做出了重大贡献。其他贡献者包括 AMMTO 的 Alexander Kirk、Huijuan Dai、Diana Bauer 和 Chris Saldaña;AMMTO 承包商 Matt Roney 和 Dwight Tanner;核能办公室 (NE) 的 Dirk Cairnes Gallimore;汽车技术办公室 (VTO) 的 Jerry Gibbs;风能技术办公室 (WETO) 的 Tyler Christoffel;水力技术办公室 (WPTO) 的 Collin Sheppard 和 Colin Sasthav;地热技术办公室 (GTO) 的 Kevin Jones 和 Douglas Blankenship;太阳能技术办公室 (SETO) 的 Kamala Raghavan 和 Matthew Bauer;氢能和燃料电池技术办公室 (HFTO) 的 Nikkia McDonald;阿贡国家实验室 (ANL) 的 Aaron Grecco;以及国家可再生能源实验室 (NREL) 的 Shawan Sheng 和 Jonathan Keller。学术和工业界的贡献者包括博伊西州立大学的 David Estrada;科罗拉多矿业学院的 Zhenzhen Yu;西北大学的 Scott Barnett;德克萨斯 A&M 大学的 Don Lipkin;加州大学洛杉矶分校/高级研究计划署 E 项目的 Laurent Pilon;匹兹堡大学的 Albert To;田纳西大学诺克斯维尔分校的 Steven John Zinkle;弗吉尼亚大学的 Elizabeth Opila;西弗吉尼亚大学的 Shanshan Hu;阿勒格尼技术公司的 Merritt Osborne;Bayside Materials Technology 的 Doug Freitag;BWX Technologies, Inc 的 Scott Shargots 和 Joe Miller;Ceramic Tubular Products LLC 的 Jeff Halfinger;Commonwealth Fusion Systems 的 Trevor Clark;挪威船级社的 Chris Taylor;电力研究院的 David W. Gandy、Marc Albert 和 John Shingledecker;Equinor 的 Rune Godoy;Fluor 的 Gary Cannell;Free Form Fibers 的 Jeff Vervlied;通用原子公司的 Hesham Khalifa 和 Ron S. Fabibish;通用电气的 Lillie Ghobrial、Jason Mortzheim、Patrick Shower、Akane Suzuki、Shenyan Huang 和 Jason Mortzheim;哈里伯顿的 Kyris Apapiou 和 Thomas Pislak;Hatch 的 Gino de Villa;肯纳金属公司的 Paul Prichard。;林肯电气公司的 Badri Narayanan;金属粉末工业联合会的 James Adams 和 Bill Edwards;Metal Power Works 的 John Barnes;Pixelligent Technologies LLC 的 Robert J. Wiacek;雷神技术公司的 Alison Gotkin 和 Prabhjot Singh;Roboze 的 Arash Shadravan;Saferock 的 Torbjorn Vralstad;圣戈班的 John Pietras;斯伦贝谢的 Anatoly Medvedev;西门子公司的 Anand Kulkarni;钢铁贸易公司的 Doug Marmaro;泰纳瑞斯的 Gonzalo Rodriguez Jordan;巴恩斯全球顾问公司的 Kevin Slattery;Timet 的 WIlliam MacDonald;Timken Steel 的 Carly Antonucci;Ultra Safe Nuclear 的 Kurt Terrani;北德克萨斯大学的 Rajarshi Bannerje;以及福伊特水电的 Seth Smith。
关于印度锌印度锌锌有限公司(BSE:500188和NSE:HINDZINC),是韦丹塔集团的公司,是世界第二大综合锌生产商和第三大银生产商。该公司提供给40多个国家,并占印度主要锌市场的75%的市场份额。印度锌锌被2023年的标准普尔全球公司可持续性评估评估为全球金属和采矿类别中最可持续的公司,反映了其卓越运营,创新和领先的ESG实践。该公司还推出了Ecozen,这是亚洲的第一个低碳'绿色锌品牌。使用可再生能源生产的Ecozen的碳足迹小于1吨碳等效的每吨锌的碳足迹,比全球平均水平低约75%。印度斯坦锌也是一家经过认证的2.41倍供水公司,并致力于到2050年或更快地实现净零排放量。印度锌是印度十大CSR公司之一,通过其重点的社会福利计划改变了190万人的生活。作为金属和采矿业的世界领导者,印度斯坦锌在为全球能源过渡提供可持续未来至关重要的关键金属方面至关重要。
本文探讨了人工智能 (AI) 投资对经济地位的关键作用,并评估了俄罗斯的人工智能战略并强调了需要改进的地方。通过文献综述和大型语言模型 (LLM),我们对俄罗斯的人工智能政策和投资进行了全面分析,将这些发现与全球趋势相结合,以衡量俄罗斯在全球格局中的地位。研究表明,虽然俄罗斯加大了利用人工智能技术的力度,但与领先国家相比仍然存在巨大差距。研究结果包括教育在培养人工智能人才方面的重要性、平衡的公私投资在促进创新方面的重要性以及全球合作在促进技术进步方面的重要性。尽管俄罗斯为弥合这些差距做出了一致努力,但仍需要采取更有针对性、更全面和更持续的方法来实现全球领导地位并成功将自己定位为人工智能强国。
我要感谢布鲁金斯学会主办此次活动,特别是感谢我的前同事本·哈里斯邀请我来到这里,让这么多来自经济学和国家安全界的朋友聚集在一起。借用20世纪哲学家乔治·康斯坦扎的话来说,这两个世界正在发生碰撞——而我作为主管国际经济的副国家安全顾问的工作正处于这个交叉点,我知道这也是本次会议的主题。简单说一下个人情况,2022年2月24日,当普京总统对乌克兰发动全面入侵时,我正在担任现任职务。在做出这个悲惨的决定之前,国家安全顾问杰克·沙利文已经在美国政府内组织了一个团队,连续几个月每天与盟友通电话,以便在几个小时内,我们就准备好与近40个合作伙伴同步行动,实施有史以来对主要经济体最严厉、最全面的制裁。那年夏天晚些时候,我离开了政府——知道我们的工作还远未完成——今年早些时候,我带着强烈的未完成任务的感觉重返政府,因此我很珍惜这次机会来评估我们的努力,以及它们表明制裁作为一种外交政策工具的力量和局限性。事实是,即使俄罗斯坦克开进乌克兰,我们也不确定能否说服我们的合作伙伴共同对俄罗斯实施严厉制裁——俄罗斯是二十国集团成员国、联合国安理会常任理事国、领先的核大国,也是与全球经济(尤其是欧洲)深度融合的顶级能源出口国。泽连斯基总统当晚对欧洲领导人发表讲话,说这可能是他们最后一次见到他活着,这激发了采取果断行动所需的情感价值。在周末之前,我们已经制裁了俄罗斯最大的银行和国有企业,切断了克里姆林宫与尖端技术的联系,并冻结了超过 3000 亿美元的俄罗斯主权资产。从某种程度上来说,这标志着制裁行动的“震慑”阶段。但制裁和出口管制发挥作用的很大一部分原因在于毅力——坚持到底的艰苦努力。
Progress in Color Colorants Coating 17 (2024), 85-96 Unlocking the Power of 4-Acetamidoantipyrine: A Promising Corrosion Inhibitor for Preserving Mild Steel in Harsh Hydrochloric Acid Environments N. S. Abtan 1 , M. A. I. Al-Hamid 2 , L. A. Kadhim 3 , F. F. Sayyid 4 , F. T. M. Noori 5 , A. Kadum 2 , A. Alamiery *6,W。K. Al-Azzawi 7 1。蒂克里特大学机械工程系,工程学院,P。O.框42。伊拉克2。伊拉克大学技术系应用科学系,P.O。框:10001,巴格达,伊拉克3。青年和体育部,P.O。框:10001,巴格达,伊拉克4。生产工程和冶金学,P.O。框:10001,巴格达,伊拉克5。Baghdad大学理学院物理系物理学系 框:10001,巴格达,伊拉克6。 大学工程和建筑环境学院化学与工艺工程系,大学Baghdad大学理学院物理系物理学系框:10001,巴格达,伊拉克6。大学工程和建筑环境学院化学与工艺工程系,大学
zainab.alansari@utas.edu.om *通信:riyaz@gpcet.ac.in收到:2023年4月16日;接受:2023年6月20日;发表:2023年7月1日摘要:在本文中,我们介绍了一种新的方法,用于使用主成分分析(PCA)和逻辑回归(LR)的组合来预测糖尿病的风险。我们的方法提供了一种独特的解决方案,可以导致对糖尿病风险的更准确和有效的预测。要开发一个预测糖尿病的有效模型,重要的是要考虑有助于疾病发育的各种临床和人口统计学因素。这种方法通常涉及在包括这些因素的大型数据集上训练该模型。这样做,我们可以更好地理解不同的特征如何影响糖尿病的发展,并为处于危险中的个人创造更准确的预测。采用PCA方法来减少数据集的尺寸并增强模型的计算功效。LR模型然后将患者分为糖尿病或非糖尿病患者。准确性,精度,召回,F1得分和ROC曲线下的面积(AUC)只是用于评估所提出模型性能的少数指标。PIMA印度糖尿病数据(PIDD)用于评估模型,结果证明了对最新方法的显着改善。该建议的模型提出了一种预测糖尿病风险的有效方法,这可能对改善医疗保健结果和降低医疗保健成本具有重要意义。所提出的PCA-LR模型优于其他算法,例如SVM和RF,尤其是在精度方面,同时优化了计算复杂性。这种方法可能有可能为大型糖尿病筛查计划提供实用有效的解决方案。
1。引言在自然世界中存在许多高度严格的环境,包括强烈的高碱度,高酸度,高盐,高或低温,高压,高压,不充分的营养,紫外线(UV)辐射,以及大量的抗生素等,这些严重的疾病曾经被认为是不可生存的,但他们确实表现出了不可或缺的研究。他们不仅还活着,而且在曾经被认为是一生不居住的恶劣条件下壮成长。极端粒子是可以忍受这些恶劣条件的微生物,它们由热嗜热,精神噬菌体,碱性,嗜酸剂,卤代,蜂蜜液,保护剂,耐辐射的极端粒子和其他类型组成。生物膜的作用被认为是每个微生物生存的独特抗药性机制之一。
L. An 博士、B. Liang、CN Li、YL Huang 博士、Y. Hu、Z. Li、JN Armstrong 教授、D. Faghihi 教授、SQ Ren 教授,纽约州立大学布法罗分校机械与航空航天工程系、能源环境与水研究所研究与教育,美国纽约州布法罗 14260。电子邮件:shenren@buffalo.edu JY Wang,SQ Ren 教授 纽约州立大学布法罗分校化学系,美国纽约州布法罗市 14260 Z. Guo,C. Zhou 教授 纽约州立大学布法罗分校工业与系统工程系,美国纽约州布法罗市 14260 SQ Ren 教授 纽约州立大学布法罗分校能源、环境与水 (RENEW) 研究所研究与教育,纽约州布法罗市 14260 关键词:可穿戴纺织品、芳纶纤维、恶劣环境、气凝胶复合材料、制造