图 4.2:1953 年推出的 K2-W 运算放大器(Dan Sheingold 供图) 脉冲编码调制 (PCM) 是早期数据转换器开发的第一个主要驱动力,Alec Hartley Reeves 被普遍认为是 1937 年 PCM 的发明者。(参考文献 7)。在他的专利中,他描述了一种真空管“计数”ADC 和 DAC(参见本书第 3 章)。20 世纪 40 年代,贝尔实验室继续开发数据转换器,不仅用于 PCM 系统开发,还用于战时加密系统。20 世纪 40 年代末和 50 年代初数字计算机的发展激发了人们对数据分析、数字过程控制等的兴趣,并产生了对数据转换器的更多商业兴趣。 1953 年,数据转换领域的先驱 Bernard M. Gordon 在马萨诸塞州康科德的地下室创立了一家名为 Epsco Engineering(现为 Analogic, Inc.)的公司。Gordon 之前曾参与 UNIVAC 计算机的研发,并看到了商业数据转换器的需求。1954 年,Epsco 推出了一款 11 位、50 kSPS 真空管 SAR ADC,称为 DATRAC。该转换器(如图 4.3 所示)通常被认为是此类设备的第一个商业产品。DATRAC 采用 19" × 26" × 15" 外壳,功耗为几百瓦,售价约为 8000.00 美元。虽然真空管 DATRAC 在当时确实令人印象深刻,但固态设备在 20 世纪 50 年代开始出现,最终彻底改变了整个数据转换领域
计划委员会伊利诺伊州伊利诺伊州穆罕默德·阿布哈特大学(Mohamed Aboukhatwa),乌尔巴纳 - 奇莱(Callie)Callie Babbitt Rochester技术学院Bert Bras Bras Georgia Georgia Tech Wan-Wanting(Grace)马萨诸塞州Chen University of Massachusetts - Lowell Dan Cooper University-洛厄尔·丹·库珀大学(Lowell Dan Cooper)阿克伦·萨米·卡拉大学(Akron Sami Kara Kara)新南威尔士大学 /澳大利亚肖恩·凯利·索尔沃斯(Sean Kelly Solvus)全球gül克里默尔大学代顿大学保罗·克里默(Paul Kremer Iowa) Schandl Commonwealth Scientific and Industrial Research Organization (CSIRO) / Australia Chenhui Shao University of Michigan David Shonnard Michigan Technological University Margaret Sobkowicz-Kline University of Massachusetts Lowell Jeffrey Spangenberger Argonne National Laboratory Sangwon Suh Watershed Meng Tao Arizona State University Vicki Thompson Idaho National Laboratory Hilal Ezgi Toraman Pennsylvania州立大学Mark Balluk Rochester技术学院Eric Williams Rochester技术研究所Roe-Hoan Yoan Yoon Yoon Virginia Polytechnic Institute and State Zhang Zhang Zhang Zhang Zhang Virginia Polytechnic研究所和州立大学Bing Zhu Tsinghua University / frande frande frande drande <
伯明翰大学可持续冷却中心,Nexleaf Analytics,巴塞尔可持续能源署和国际能源保护研究所的可持续能源。致谢此简报是由可持续能源为所有人(Seforall),伯明翰大学,Nexleaf Analytics,国际能源保护研究所和巴塞尔可持续能源署制作的。由托比·彼得斯(Toby Peters)教授(伯明翰大学),阿尔文·何塞(Alvin Jose)和本·哈特利(Ben Hartley)(Seforall)领导,由Shahrzad Yavari(Nexleaf Analytics),Thomas Motmans,Veronica Corno和Dimitris Karamitsos(Base),Sanjay Dube,Seief,Seef,Seef,Seef(我)和Brian Dean(sefor)和Brian Dean(Seef)和Brian dean(Seef),并得到了Shahrzad Yavari(Nexleaf Analytics)的重大贡献。根据Seforall Partners的分析请求,制作了此简报说明,并且没有经过同行审查的过程。由于对COVID-19反应的背景下的疫苗冷链问题的考虑增加,因此公开共享。以这种格式提供,以支持决策者和开发从业人员,并进行更新和修订。这项工作中表达的发现,解释和结论并不一定反映出Seforall,其行政委员会或其捐助者的观点。seforall不能保证本工作中包含的数据的准确性。Seforall感谢Kigali冷却效率计划,瑞士开发与合作局以及使本报告成为可能的儿童投资基金会提供的财务和技术援助。我们还感谢奥地利发展局,查尔斯·斯图尔特·莫特基金会,宜家基金会,丹麦外交部,冰岛外交部提供的资金,以支持提供Seforall工作计划。有关Seforall支持者的完整列表,请访问我们的网站www.seforall.org。
环境技术贸易咨询委员会(ETTAC)从10:00 AM - 美国东部时间至12:00 PM到2024年5月21日下午1:00至2:00召开了第八次会议。会议是混合的,包括虚拟和面对面的出席。面对面的参与者在Herbert C. Hoover大楼的商业研究图书馆见面。ETTAC Members Present: Mr. Randy Baerg Ms. Dana Blumberg Ms. Lina Chiaverini Ms. Anne Germain Ms. Cynthia Hartley Mr. Rick Hill Ms. Carrie Houtman Ms. Tasha Jamaluddin Ms. Debra Johnson Mr. Ajay Kasarabada Mr. Carlos Lemos Mr. Joshua Mahan Mr. Ashish Raval Mr. Eric Reading Mr. Ben Rubin Ms. Clare Schulzki先生Stephen Strachan先生John Trofatter先生Pauli Undesser先生Craig Updyke先生Roberto Vengoechea先生George Vorsheim先生Sean Wihera先生先生,彼得·泽米克(Sean Wihera)先生,彼得·泽米克(Peter Zemek和环保行业(OEEI),国际贸易专家,OEEI Alec Hilton,国际贸易专家,Oeei Anthony Quinn,标准与知识产权办公室团队负责人,ITA ANA REED,ITA ANA REED,贸易协定,谈判和合规性办公室,tom tom Conley,ITA Conley ofertians of thm Conley ofertians of tom and Confories ofertians of thm Conley offiens of toberies ofertians of the Confories of toberies offiers of toberies of the and Confiere of贸易,贸易委员会(ITA CONLEY ITA)。协议,谈判与合规(TANC),ITA
使用 7 Tesla fMRI 对人脑的异质-内感受系统进行皮层和皮层下映射 Jiahe Zhang 1 、Danlei Chen 1 、Philip Deming 1 、Tara Srirangarajan 2 、Jordan Theriault 3 、Philip A. Kragel 4 、Ludger Hartley 1 、Kent M. Lee 1 、Kieran McVeigh 1 、Tor D. Wager 5 、Lawrence L. Wald 3 、Ajay B. Satpute 1 、Karen S. Quigley, 1 Susan Whitfield-Gabrieli 1 、Lisa Feldman Barrett 1,3,6 * & Marta Bianciardi 3,7 * 1 东北大学心理学系,马萨诸塞州波士顿 02115 2 斯坦福大学心理学系,加利福尼亚州斯坦福 94305 3 放射学系,Athinoula A. Martinos 中心麻省总医院生物医学成像系,马萨诸塞州波士顿 02139 4 埃默里大学心理学系,佐治亚州亚特兰大 30322 5 达特茅斯学院心理与脑科学系,新罕布什尔州汉诺威 03755 6 麻省总医院精神病学系,马萨诸塞州波士顿 02139 7 哈佛大学睡眠医学部,马萨诸塞州波士顿 *L.F.B.和 M.B.共同担任高级作者。通讯作者:Jiahe Zhang,心理学系,125 Nightingale Hall,东北大学,马萨诸塞州波士顿 02115-5000。电子邮件:j.zhang@northeastern.edu Lisa Feldman Barrett,心理学系,125 Nightingale Hall,东北大学,波士顿,MA 02115-5000。电子邮件:l.barrett@northeastern.edu Marta Bianciardi,放射科,Athinoula A. Martinos 生物医学成像中心,麻省总医院和哈佛医学院,149 号楼,2301 室,13 街,查尔斯顿,MA 02129。电子邮件:martab@mgh.harvard.edu 作者贡献:T.W.、L.W.、A.B.S.、L.F.B.和 M.B.设计研究。J.Z.、D.C.、J. T.、L.H.、K.M.L、K.M.、A.B.S.、K.S.Q.、S.W-G.、L.F.B.和 M.B.进行了研究。J.Z.、D.C.、P.D.、T.S.、L.F.B.和 M.B.分析了数据并撰写了论文。所有作者都阅读并批准了该论文。利益冲突声明:作者声明没有利益冲突。分类:生物科学/神经科学 关键词:内脏运动、内感受、内脏感觉、异质平衡、默认模式网络、显着网络
感谢您有兴趣加入 NHS Providers。作为一个忙碌、高效的组织,我们的宗旨是支持我们的成员。我们通过增强影响力和鼓励发展与改进来实现这一目标:我们为该行业在政策制定和政府中提供强有力的发言权,并与他们的董事会合作,帮助他们应对我们生活和工作的复杂时代。在过去几年中,我们的组织取得了长足的发展,现在我们的目标是在政策领域中成为更具影响力的声音,专注于真正支持我们成员优先事项的问题,并努力实现让英国医疗保健蓬勃发展的适当条件。我们正在寻找一位才华横溢、干劲十足的政策和战略总监来领导我们的政策和战略理事会,该理事会涵盖我们的政策、公共事务和分析团队。这是一个重要的领导机会,加入执行管理团队 (EMT),共同负责管理一个拥有 100 人的组织并领导 30 多名专业人员,由政策主管团队提供支持,并与我们的沟通、发展和参与理事会密切合作。随着大选的临近,这一角色将成为组织影响力不可或缺的一部分,因为我们要驾驭政治环境,并致力于分析和扩大对我们的成员和 NHS 至关重要的问题。对于有志于我们能够做出的改变的人来说,这是一个激动人心的机会。您将领导塑造我们的声音和影响力的核心政策领域,并与我们的首席执行官和副首席执行官一起成为媒体上 NHS 提供商的主要代言人。您将是一位富有创造力和鼓舞人心的思想家,寻找能够激发想象力的新颖想法 - 但这些想法有严谨性和证据支持以实现变革。您将是一位长期战略家,但能够快速敏捷地工作,对当今的问题做出深思熟虑和策略性的反应,您将了解医疗保健环境,但最重要的是,您将与我们才华横溢、忠诚的团队合作。如果您相信您具备我们正在寻找的个人素质、技能和经验,我们非常期待您的来信。朱利安·哈特利爵士 萨弗伦·科德里 首席执行官 副首席执行官
M.Sc. 化学 - 学期I无机化学论文 - I无机化学 - I 12小时单位I:金属配体平衡溶液中的逐步和整体形成常数及其相互作用及其相互作用及其相互作用,逐步常数的趋势,影响金属复合物稳定性的因素,该因素与金属离子和静脉效应的性质和静脉效应的性质和静脉效应的性质,并确定型号的be themant效应,并确定静脉效应,并确定静脉效应的量。分光光度法。 II单元:溶剂在化学反应中的非水溶剂作用,溶剂的物理特性,溶剂类型及其一般特征,非水溶剂中的反应,参考液体氨和液体SO 2。 单元III:过渡金属络合物的磁性特性可过渡金属络合物和灯笼的磁性特性,自旋轨道耦合以及过渡金属离子和稀土的易感性;具有A,E和T对称性的晶体场术语的金属配合物的磁矩,T.I.P.,分子内效应,金属复合物的抗磁磁性和铁磁性,超级磁磁性。 高自旋和低自旋平衡,解开磁矩,磁交换耦合和自旋跨界。 第四单元:固态无机材料简介,金属键,带理论(区域模型,布里鲁因区域,区域模型的限制):固体缺陷,P型和N型,无机半导体,无机半导体(用于跨晶体管,IC等,用于等 ),无机材料,超导体的电气,光学,磁性和热性能,特别强调了高温超级导体的合成和结构。 建议的书:1。 2。 3。 4。M.Sc.化学 - 学期I无机化学论文 - I无机化学 - I 12小时单位I:金属配体平衡溶液中的逐步和整体形成常数及其相互作用及其相互作用及其相互作用,逐步常数的趋势,影响金属复合物稳定性的因素,该因素与金属离子和静脉效应的性质和静脉效应的性质和静脉效应的性质,并确定型号的be themant效应,并确定静脉效应,并确定静脉效应的量。分光光度法。II单元:溶剂在化学反应中的非水溶剂作用,溶剂的物理特性,溶剂类型及其一般特征,非水溶剂中的反应,参考液体氨和液体SO 2。单元III:过渡金属络合物的磁性特性可过渡金属络合物和灯笼的磁性特性,自旋轨道耦合以及过渡金属离子和稀土的易感性;具有A,E和T对称性的晶体场术语的金属配合物的磁矩,T.I.P.,分子内效应,金属复合物的抗磁磁性和铁磁性,超级磁磁性。高自旋和低自旋平衡,解开磁矩,磁交换耦合和自旋跨界。第四单元:固态无机材料简介,金属键,带理论(区域模型,布里鲁因区域,区域模型的限制):固体缺陷,P型和N型,无机半导体,无机半导体(用于跨晶体管,IC等,用于),无机材料,超导体的电气,光学,磁性和热性能,特别强调了高温超级导体的合成和结构。建议的书:1。2。3。4。Incedy,J。复杂平衡的分析应用:纽约,纽约(1976)。Hartley,F。R.,Burgess,C。&Alcock,R。M.解决方案Equilibria Prentice-Hall:欧洲(1980)。Ringbom,A。分析化学中的络合Wiley:纽约(1963)。 H.H. 的非水溶性化学 西斯勒。 5。 R.L. 的磁化学 卡林。 6。 Mabbs,F。E.&Machin,D。J. 磁和过渡金属综合体Chapman and Hall:英国(1973)。Ringbom,A。分析化学中的络合Wiley:纽约(1963)。H.H.西斯勒。5。R.L.卡林。6。Mabbs,F。E.&Machin,D。J.磁和过渡金属综合体Chapman and Hall:英国(1973)。
本书希望成为理解和使用最先进的人造视觉技术所必需的几何,代数和统计基础的合成介绍。为了不夸大讨论,我尽可能地尝试了输入不同定理的演示,而是为了激发好奇心,他将讨论留给了读者。实际上,本书的最初目标永远不是创造一种严格而详尽的治疗方法,在该疗法中,您经常在计算和示范中迷失方面的风险,冒着疲倦的读者并将注意力转移到某些重要概念上的风险。以相同的方式,我没有一个目标,要谈论与图像和人造视觉阐述有关的任何主题,但我将自己限于与我直接在研究活动中直接有一个实验有关的唯一主题,我更谨慎地谨慎地,我可以更加谨慎地给出最小的贡献。这本书的起草实际上受到我的研究领域的强烈影响,这些领域主要涉及人造愿景对机器人的感知以及自动驾驶汽车的发展和控制。计算机视图是一个极其刺激的科学领域,也是非专业人士的。同样的事实是,在人工视觉的几何形状中,统计数据,优化是如此紧密相关的主题,使其成为该主题外部的完整且充满兴趣的研究范围。但是,主题之间的这种广泛的相关性并没有帮助本书章节中的划分,因此可以广泛使用章节与其他分会之间的参考。文本中插入的引文大大减少了,我仅指我认为基本的文本,并在可能的情况下提到了第一个提出理论背后思想的人:书目中提到的文章的阅读。我在可能的情况下介绍了与意大利语相对应的英语术语,而不是盎格鲁电影,而是建议在Internet上搜索任何关键字,以确定连接到所处理的主题。对于本卷的组织,我从我建议阅读的几本书中汲取了灵感,包括Hartley和Zissetman的“多视图几何” [HZ04],“图案识别和机器学习” [BIS06]和“计算机视觉中的新兴主题” [MK04] [MK04]由Medes和Kang绘制。对于主题与图像的详细说明更加紧密相关,一本很棒的书,也可以在线获得,可以是Szeliski [Sze10]的“计算机视觉:算法和应用程序”。将使用和极简主义的数学语法:
密码学的悠久历史[1-6]。在20世纪之前,Cryptog-raphy被视为一种主要依靠个人技能构建或破坏代码的艺术,而无需进行适当的理论研究[7]。专注于信息的态度,众所周知,经典加密术可确保在不同情况下或间谍之间或间谍之间的不同情况下进行沟通。经典密码学的重要代表是换位密码,它重新排列了信息以隐藏原始含义。在20世纪初期,在哈里·奈奎斯特(Harry Nyquist),拉尔夫·哈特利(Ralph Hartley)和克劳德·香农(Claude Shannon)建立了信息理论之后,对加密 - 拉皮(Cryptog-raphy)的研究开始利用数学工具。密码学也成为工程的一个分支,尤其是在使用计算机之后,允许数据加密。现代密码学的两个主要方案包括对称(私钥)加密章节,例如,数据加密标准(DES)[14]和高级加密标准(AES)[15]和非对称(公共键)密码学,例如RSA AlgorithM [16]。对称密码学取决于通信方(Alice和Bob)之间的共享密钥,而在非对称加密术中,加密密钥与解密密钥不同。通常,对称加密图比不对称的密码学更有效,具有更简洁的设计,但是在共享键的安全分布方面,它具有困难。另一方面,使用公共密钥和私钥进行加密和解密的非对称加密术,分别依赖于称为单向函数的数学问题,这些函数从一个方向(公共钥匙)[17] [17] [17] [17] [17],并且在如今更广泛地用于避免在Symetric Crysetric Crystric Crypectrics中避免使用安全级别的Safe Safe Page of Secy safe Safe Pression。然而,随着量子计算的快速开发及其在解决常规单向函数方面的潜力,可以使用Shor的算法[20]和Grover's算法[21]中断当前的加密系统[19] [19];因此,在信息安全的新时代,QKD现在变得越来越重要。与当今使用的非对称加密术不同,QKD基于对称密码学,保证了用量子力学定律确保秘密键的安全分布,即测量过程通常会扰乱
LOOP 脱碳技术 • 首个工业规模装置在剑桥部署 • 全球 LOOP 设备网络将生产数千吨高质量石墨烯 • 独特技术为工业脱碳提供商业案例 英国剑桥 – 2024 年 11 月 20 日:英国气候技术公司 Levidian 推出了第二代 LOOP 技术,该技术将首次实现高质量石墨烯的工业化生产。Levidian 市场领先的 LOOP 系统为重度排放者和难以减排的行业(如垃圾填埋场和铝生产商)提供了一种途径,既可以实现其生产过程的脱碳,又可以从生产的石墨烯和氢气中开辟新的收入来源。这解锁了由于成本原因可能无法实现的脱碳项目。LOOP 的核心是一个获得专利的“喷嘴”,其中施加微波能量将甲烷裂解成其组成部分,从而产生清洁的氢气并以高纯度石墨烯的形式捕获碳。单个喷嘴每年可生产约 15 吨石墨烯——足以用来改进数千辆配备石墨烯增强型电池和轮胎的电动汽车的性能,使汽车可以行驶更远、更长时间,同时减少对环境的影响。该公司的目标是到 2030 年通过 LOOP 设备网络每年生产超过 50,000 吨石墨烯,这将使 Levidian 成为世界上最大的石墨烯生产商之一*,同时每年减少约 300 万吨二氧化碳当量的排放量。Levidian 首席执行官 John Hartley 表示:“我们相信,石墨烯将在帮助世界上碳密集型企业脱碳方面发挥核心作用,凭借其投资回报期短的特点,解决脱碳项目的商业案例,并提高其接触的几乎所有产品的性能。 “随着这项最新技术的发布,我们将石墨烯推向主流,抛开质量和规模等所有旧问题,提供无与伦比的石墨烯生产水平,与当今市场上的任何其他产品相比,其碳强度更低、价格更便宜、质量更高。”
