摘要:将人工智能 (AI) 融入农业技术彻底改变了作物管理,为优化作物产量预测提供了先进的工具。本文探讨了使用人工智能驱动模型来提高作物产量预测准确性的方法、优势和挑战。通过全面回顾现有文献和案例研究,本研究强调了人工智能在改善农业粮食安全和可持续性方面的潜力。农业中的人工智能技术有望改善作物管理技术和生产成果。本文研究了人工智能系统如何通过监测、检测疾病、管理灌溉和预测产量来最大限度地提高作物产量。本研究通过回顾相关文献、案例研究和技术进步来研究人工智能对农业实践的影响。人工智能算法、机器学习和遥感技术使农民能够做出数据驱动的决策,优化资源利用,减轻环境危害,从而实现可持续的农业实践和提高粮食安全。关键词:人工智能、农业技术、作物产量预测、机器学习、精准农业 1. 简介 农业一体化标志着现代农业实践的一个转折点,为精准和可持续的粮食生产铺平了道路。人工智能技术可以优化作物管理策略,提高产量,降低环境风险,特别是在全球粮食安全挑战、气候变化不确定性和资源限制方面。本研究探讨了人工智能驱动的农业解决方案,以了解其在可持续粮食生产中的变革潜力、[1]科学意义和实际应用。1.1 背景由于人口增长、气候变化和饮食偏好的演变,全球对粮食的需求正在增加。准确的作物产量预测可确保粮食安全、优化农业资源配置并最大限度地减少损失。传统的作物产量预测方法依赖于历史数据和简单的模型,往往需要赶上现代农业挑战。将人工智能融入农业技术提供了一种有希望的解决方案,它提供了更准确、更及时的预测,使农民和决策者能够做出更好的决策。1.2 研究问题尽管农业技术取得了进步,但由于环境因素、土壤条件和作物管理实践的复杂相互作用,高精度预测作物产量仍然具有挑战性。传统预测模型的限制在于无法处理和分析大量[1]不同的数据。人工智能具有处理大数据和发现隐藏模式的能力,有可能克服这些限制并优化作物产量预测。
经历了从宏观到微观或纳米级原型的超大规模集成(如 VLSI)的范式转变,以提高效率、提高吞吐量和增加功率密度。12 因此,为了提高效率,人们也在小型化和工艺强化方面观察到大量研究活动,这些研究活动更为广泛使用的商业能量收集器,如电池、14,15 光伏电池 16 或燃料电池 17,18。特别是自从 18 世纪威廉·格罗夫爵士 19 将化学能转化为电能的开创性发明以来,燃料电池(FC)尽管遭遇了许多挫折,但还是取得了令人瞩目的进步 20。21 例如,FC 作为孤立或分布式电源的效用现在已经转化为几兆瓦的发电厂。 17 由聚合物电解质膜、磷酸、甲醇或碱组成的各种燃料电池已经以不同的长度和性能规模出现,不仅为能源密集型火箭提供动力,还用于运行微型微型发射器或生物医学设备。22 – 25 目前,燃料电池中使用的燃料是氢气 (H 2 )、甲醇
过去几年,我们都感受到了食品价格上涨的影响,这给公众和食品行业带来了沉重的负担。英国脱欧、新冠疫情、俄罗斯入侵乌克兰以及随之而来的通货膨胀都起了一定作用。食品行业不得不应对能源和运营成本的增加,以及由于劳动力短缺和供应链问题造成的产量损失。与此同时,供应链冲击导致产生过剩食品,而这些食品的处置又给农民、制造商和零售商带来了额外成本。此时,消费者面临着生活成本危机,购买新鲜农产品的能力有限,因此他们选择用营养食品来替代不太健康、更便宜的替代品。1 然而,食品行业,尤其是农民、制造商和零售商,可以通过简单地重新分配废物流中仍可食用的元素来减轻其中一些成本——特别是与食物垃圾处理相关的成本。为了了解食品企业对于重新分配的观点和态度,城市丰收对其食品捐赠者进行了调查。
肠道菌群释放的发酵产品为宿主提供了能量和重要的调节功能。 然而,关于微生物群和人类宿主之间的代谢物交换的定量信息很少,因此发酵产物的有效剂量。 在这里,我们引入了一个综合框架,将主要肠道细菌的实验表征与人类消化生理学的定量分析相结合,以对这种交换及其对饮食和微生物群组成的依赖进行数字。 从加油菌群生长的复杂碳水化合物中,我们发现大多数碳最终都以宿主大量利用的发酵产品结束。 混合发酵产品的这种收获随饮食的差异很大,从美国人口内的100-700 mmol介于饮食之间,到坦桑尼亚的Hadza人的1300人。 因此,发酵产品覆盖了人类宿主每日能量需求的2%至12%,大大低于实验室小鼠估计的21±4%。 相比之下,微生物群的组成对每日的总收获几乎没有影响,但决定了特定发酵产物的收获。 丁酸酯以促进上皮健康而闻名,显示出最大的变化。 因此,我们的框架确定并量化了驱动代谢相互作用的主要因素,并在微生物群和宿主之间进行信息交换,这对于机械学上至关重要的是剖析微生物群在健康和疾病中的作用。肠道菌群释放的发酵产品为宿主提供了能量和重要的调节功能。然而,关于微生物群和人类宿主之间的代谢物交换的定量信息很少,因此发酵产物的有效剂量。在这里,我们引入了一个综合框架,将主要肠道细菌的实验表征与人类消化生理学的定量分析相结合,以对这种交换及其对饮食和微生物群组成的依赖进行数字。从加油菌群生长的复杂碳水化合物中,我们发现大多数碳最终都以宿主大量利用的发酵产品结束。混合发酵产品的这种收获随饮食的差异很大,从美国人口内的100-700 mmol介于饮食之间,到坦桑尼亚的Hadza人的1300人。因此,发酵产品覆盖了人类宿主每日能量需求的2%至12%,大大低于实验室小鼠估计的21±4%。相比之下,微生物群的组成对每日的总收获几乎没有影响,但决定了特定发酵产物的收获。丁酸酯以促进上皮健康而闻名,显示出最大的变化。因此,我们的框架确定并量化了驱动代谢相互作用的主要因素,并在微生物群和宿主之间进行信息交换,这对于机械学上至关重要的是剖析微生物群在健康和疾病中的作用。
本财年的强季风降雨给尼泊尔带来了死亡和破坏,但也带来了一些好消息。农业部周五宣布,尼泊尔农民预计本财年水稻收成将创历史新高。由于“高于正常水平的降雨”支持了水稻产量提高,尼泊尔的水稻移栽速度是几十年来最快的国家之一。马德西省长期以来一直存在降雨不足的问题,但该省获得两位数的收成,推动了全国水稻产量的提高。农业和畜牧业发展部的初步估计,本财年水稻产量同比可能增长约 4.04%,达到 595 万吨的新纪录。“这是有记录以来的最高水稻产量,”该部发言人马蒂娜·乔希·瓦伊迪亚说。水稻产量的增长可能会给开伯尔-普赫图赫瓦省夏尔马·奥利领导的政府带来一些喘息之机。该国经济正在努力应对产量低的问题,这导致进口增加。根据政府的最低支持价格,稻谷总价值(不包括稻草和稻壳等副产品)为 2132 亿卢比。尼泊尔大部分地区的稻谷在 6 月移栽,10 月至 11 月收获。
f f f f t f e e+:c.o!!o 6 s 6in>。”b PCD J4 TQ O-6QL Q:。p> t l.:-.=='-'6 oj y o-d。:$;;€pg3e,glfg.eees 9l ..T c.t c.t m s ln ro€lttttit _91 _91(9(,('('('('('(j)),
图3。2,000 L收获设备面积的收获要求。所需的设备区域基于实验能力,而没有任何安全因子超额。推荐的设备区域基于实验能力,其额外的建议安全系数超过了,以确保性能,以一般的启发式和制造商的建议为基础。标签表示每种技术所需的胶囊总数。
虽然最终的项目报告要到2023年12月才到期,但该项目已经发展到团队可以概述已考虑的选项的概述,包括对某些SESSF物种的模拟测试结果。项目团队于2023年10月18日在一项讲习班上提出了他们的初步调查结果,该研讨会由代表捕鱼行业,研究组织,政府机构,负责制定政策,渔业监管机构(英联邦和州),渔业经济学家和环境非政府组织的政府机构参加。旨在在2023年和2024年的一系列研讨会中的第一个研讨会的目的是寻求有关MSHS项目的结果和建议的反馈,这将为决定多种收获策略的哪些组成部分为基础提供基础,以及需要进一步工作。
您是否想知道将肥料涂在土壤上后发生了什么?将动物粪便应用于花园或蔬菜地块,从而增加了土壤动物群的丰富度,尤其是细菌,真菌和earth。因此,土壤呼吸和养分矿化增加。养分矿化是通过土壤微生物(例如死动植物)等有机材料的分解,它们将这些材料转化为可用的植物无机形式。您可能听说过,一茶匙土壤中的生物数量可能超过90亿。尽管土壤微生物仅占土壤体积的一小部分,但它们起着非常重要的作用。有机修正案(例如动物粪便)在农业土壤中的应用是传统园艺的替代实践,可改善土壤质量,提供养分和碳,促进微生物的多样性和活动,并改善土壤结构。
† ifo经济研究所,Poschingerstr. 5, 81679 慕尼黑,德国 电子邮箱:berger@ifo.de ∗ 致谢:感谢Tobias Geiger协助我根据基础气象数据生成标准化降水蒸散指数。此外,还要感谢Suphi Sen、Markus Zimmer和Mathias Mier,他们为我提供了许多有益的建议。本文是“气候极端事件的短期和长期影响”(SLICE)项目的一部分,该项目由德国联邦教育与研究部资助。