摘要 - Internet技术已经改变了计算和数据科学领域的范式转移,而这种范式定义的一种变化是“物联网”或IoT的范式。如今,成千上万的家用电器使用集成的智能设备,这些设备允许远程监视和控制,还允许强化计算工作,例如高端AI-Ai-In-Contigation Smart Security Security Security Security Systems,并为用户提供持续的警报。这些物联网设备的更新过程通常缺乏检查集中式服务器的安全性的能力,这些服务器可能会受到损害并托管恶意文件文件,因为假定服务器在部署过程中是安全的。可以使用分散的数据库来解决此问题的解决方案,以持有哈希和固件。本文讨论了用于托管商业物联网产品的MRWARES的不安全服务器的可能含义,并旨在提供基于区块链的分散解决方案,以寄托企业软件文件,并具有不可超然性的属性,并受控访问对企业软件上载的访问,以使未经置换的使用功能。纸张在此类安全的体系结构模型中使用了可能的硬件实现以及使用加密安全组件的灯光。
抽象的加密哈希功能在确保数据安全性,从可变长度输入中生成固定长度哈希至关重要。Hash函数SHA-256因其二十多年的严格审查后的弹性而被信任数据安全性。其关键特性之一是碰撞电阻,这意味着找到具有相同哈希的两个不同输入是不可行的。当前,最佳的SHA-256碰撞攻击使用差分密码分析在SHA-256的简化版本中找到碰撞,这些碰撞减少以更少的步骤,从而使发现碰撞是可行的。在本文中,我们使用满意度(SAT)求解器作为搜索步骤减少的SHA-256碰撞的工具,并借助于计算机代数系统(CAS),动态地指导求解器,用于检测不一致之处并推断信息,否则求解器将不会单独检测到求解器。我们的混合动力SAT + CAS求解器明显超过了纯SAT方法,从而使我们能够在步骤减少的SHA-256中发现碰撞,并具有更大的步骤。使用SAT + CAS,我们找到了带有修改初始化向量的SHA-256的38步碰撞,这是由Mendel,Nad和Schläffer的高度复杂搜索工具首先找到的。相反,纯粹的SAT方法可能会发现不超过28个步骤的碰撞。但是,我们的工作仅使用SAT求解器Cadical及其程序化接口Ipasir-Up。
摘要 — 许多区块链计划大量使用星际文件系统 (IPFS) 来链下存储用户数据。集中管理、数据模糊、数据不可靠以及易于创建信息孤岛都是传统可追溯系统的问题。本研究开发了一种使用区块链技术的监控系统,用于记录和查询非易腐农产品供应网络中的产品信息,以解决上述问题。通过利用区块链技术的分布式、防篡改和可追溯性,可追溯数据的透明度和可信度得到了显着提高。为了减轻区块链的压力并实现高效的信息查询,建立了一个存储结构,其中公共和私人数据都使用加密技术存储在区块链和星际文件系统 (IPFS) 中。由于区块链技术能够追踪食品的来源,因此它有助于发展可靠的食品供应链并建立农民与客户之间的融洽关系。由于它为数据的保存提供了安全的位置,因此它可以为实施数据驱动的农业技术铺平道路。除了提高数据安全性之外,在 IPFS 中记录农场数据并在智能合约中存储加密文件 IPFS 哈希值还解决了区块链存储爆炸的问题。当与智能合约结合使用时,它可以响应区块链中存储的数据的变化,实现各方之间的即时流出。本文还提供了实施模拟和性能分析。研究结果证实,我们的系统提高了敏感信息的安全性,保护了供应链数据,并满足了实际应用的需求。此外,它还提高了吞吐效率,同时降低了延迟。
现场可编程的门阵列(FPGA)广泛用于嵌入式和低功率系统,用于各种实时工业应用。他们的硬件可重构性可以使应用程序灵活性,并满足严格的计算,实时和控制要求,这是由大量工业和特征(IoT)应用在包括制造,汽车,无人机,无人机,机器人,机器人,军事,军事,空间站,智能家居和智能运输的领域中引起的。此外,与中等体积市场的ASIC相比,FPGA提供了有利的价格表现比,这要归功于它们的众多I/O引脚,可重新配置的逻辑和嵌入式数字信号处理核心以及现成的可用性。此外,他们能够在延迟和能量方面通过空间和可重构计算来胜过CPU。本期特刊的目的是突出基于FPGA的嵌入式系统的最新研究和开发,用于计算,实时和控制需求,这是由现有或新兴的工业和物联网应用产生的。它包括六篇有趣的论文,其中涵盖了许多主题,包括量词后加密(PQC),机器学习(ML),安全,设计和验证以及传感器系统。前两个作品为PQC利用FPGA。具体来说,G。Li等人的第一批作品“ ProgramGalois:基于晶格的加密术的Radix-4离散GALOIS转换架构的实体发电机”。旨在利用FPGA进行完全同态加密,尤其是数字理论转换操作。专注于数字签名类别中的括约肌+方案。本文提出了一种新型离散的Galois Transermation算法,该算法利用Radix-4变体和一组可扩展的构件来实现更高水平的并行性。J.López-Valdivivieso等人的第二件作品“基于HASHES的硬件软件体系结构的设计和实现”。本文通过利用在FPGA上合成的RISC-V处理器来介绍用于SPHINCS+方案的硬件 - 软件体系结构。选择在算法级别使用哪种类型的实例时,可以提供模块化。与参考软件相比,他们的实现通过Shake-256功能提高了15倍,使用Haraka时的效果提高了近90倍。E. Jellum等人的第三项工作“针对网络物理系统的面向反应器的硬件和软件的代码”。提出了一种形式的方法,这是一个定义明确的计算模型
摘要 :当代密码算法能够抵御最严重的网络安全威胁和引人注目的网络攻击。近年来,信息安全科学家和研究人员已经开发出各种密码方案,能够抵御使用最复杂(就处理器速度而言)的经典计算机进行的攻击。然而,随着量子计算机的出现,这种抵抗力很快就会消失。在本文中,我们根据人们普遍认为量子计算机和量子算法对当前安全的密码原语的威胁对其进行了分析。我们发现,Grover 和 Shor 的基于量子的算法实际上分别对对称密码系统(例如 128 位 AES)和非对称(公钥)密码系统(例如 RSA、Elgamal、椭圆曲线 Diffie Hellman (ECDH) 等)的持续安全性构成了威胁。我们发现,这些算法之所以比当前系统更具有密码分析能力,是因为它们(Grover 和 Shor)都为各自的算法配备了量子电路组件,可以通过将单个电路应用于 n 量子位输入的所有可能状态来并行执行 oracle。量子计算机和基于量子的算法具有这种指数级的处理能力,因此当前的密码系统很容易被破解,因为这些算法可以解决底层数学问题,例如整数分解、离散对数问题和椭圆曲线问题,这些问题构成了受影响密码系统安全性的基础。基于这一认识,作为我们为后量子时代做好准备的一部分,我们探索了其他数学结构(格、哈希、代码、同源性、基于高熵的对称密钥抗性和多元二次问题),这些结构的难度可能超过量子计算机和基于量子的算法所带来的密码分析噩梦。我们的贡献是,基于这项研究的结果,我们可以自信地断言,对于严重依赖 HTTPS、TLS、PGP、比特币等协议和应用程序的组织来说,一切希望都没有破灭,这些协议和应用程序的安全性源自濒临灭绝的密码系统。 稿件于 2023 年 5 月 6 日收到 | 修订稿件于 2023 年 5 月 13 日收到 | 稿件于 2023 年 6 月 15 日接受 | 稿件于 2023 年 6 月 30 日发布。 * 通信作者