由于揭示了真正的偏好是策略机制中的主要策略1,因此对他人的复杂战略或昂贵的信息获取没有收益。因此,这种机制被认为是公平的:它们“平衡了比赛场”。但是,有广泛的实验和领域证据(Hakimov and Kubler,2021; Hassidim等人,2017a),参与者尤其是通过在提交的排名中跳过流行的选择来歪曲他们的偏好。要纠正可能的负面效果,以理解嫉妒和效率,了解这种现象背后的内容很重要。,研究人员最近提出了更为复杂的偏好,而不是将非真实性的策略指定为错误。要确定此类偏差的起源,需要对所有竞争理论的可检验预测。
量子线性求解器是求解方程线性系统的最早且众所周知的量子算法之一是Harrow,Hassidim和Lloyd [8]。这实现了复杂性的指数改善(即运行时)。随后在Childs等人的量子算法中获得了相对于精度的提高复杂性。[9]。这是通过基于量子奇异值转换(QSVT)代替[8]的量子相估计来实现的。Childs等人的算法。可以看作是Gilyen等人的更通用QSVT算法的特殊情况。[10]。应注意的是,由于州准备或状态读数要求,任何潜在的指数改进都处于风险的危险中[11]。这需要以某种形式解决,而无需使用“被动QRAM”,而没有已知的可扩展物理实现[12]。
2009年由Aram Harrow,Avinatan Hassidim和Seth Lloyd提出的HHL算法用于求解方程的线性系统。我们将经典算法的操作计数与HHL算法进行比较,该算法是一种量子算法,可提高计算速度。要解决这样的线性系统,我们以A |形式抛弃了我们的问题x⟩= | b⟩,哪里| x⟩和| B⟩是归一化的向量,A是遗传学矩阵。该过程涉及通过使用量子相估计(QPE)子例程来找到Ma-Trix的特征值。这反过来利用了反量子傅立叶变换(QFT)。然后,确定的特征值用于实现受控的机构,以有效地找到矩阵a的倒数。这使我们能够计算| X = A - 1 | B⟩。最后一步是取消计算相位估计。我们接下来讨论该算法在物理硬件上的实现,并在IBM的量子计算机上模拟结果。
HHL 算法由 Aram Harrow、Avinatan Hassidim 和 Seth Lloyd 于 2009 年提出,用于利用量子计算原理求解线性方程组。为了求解这样的系统,我们将问题表示为 A | x ⟩ = | b ⟩ 的形式,其中 | x ⟩ 和 | b ⟩ 是归一化向量,A 是厄米矩阵。该过程涉及利用量子相位估计 (QPE) 子程序查找矩阵的特征值。这反过来又利用了逆量子傅里叶变换 (QFT)。然后使用确定的特征值实现受控旋转,以有效地找到矩阵 A 的逆。这使我们能够计算 | x ⟩ = A − 1 | b ⟩ 。最后一步是取消计算相位估计。接下来我们讨论该算法在物理硬件上的逐步实现,并在IBM量子计算机上模拟结果。最后,我们将经典算法的运算次数与有望大幅提高计算速度的HHL算法进行比较。
预计量子计算机解决某些问题的效率将大大高于传统计算机。量子算法可以显著超越传统算法的一个领域是偏微分方程 (PDE) 的近似解。这一前景既令人兴奋又令人信服:令人兴奋是因为偏微分方程在许多科学和工程领域中无处不在,而令人信服是因为一些解决偏微分方程的主要经典方法(例如通过有限差分或有限元方法)是基于离散化偏微分方程并将问题简化为求解线性方程组。有些量子算法通过源自 Harrow、Hassidim 和 Lloyd (HHL) 算法的方法,以比传统算法快得多的速度(在某种意义上)求解线性方程 [ 1 ],因此这些算法可以应用于偏微分方程。该领域已经出现了一系列论文,它们开发了新的量子算法技术 [ 2 – 10 ],并将量子算法应用于特定问题 [ 3 , 11 – 14 ]。然而,为了确定是否可以获得真正的量子加速,必须考虑所有复杂性参数,并与最佳经典算法进行比较。量子算法应该与
其他作者8,9使用了ELD可编程栅极阵列(FPGA)来效仿量子电路,以建模化学现象。虽然一个人在自然时间内无法对经典结构执行量子算法,但FPGA可用于模仿量子电路并了解其潜在的速度。目前存在许多用于求解方程线性系统的量子算法,其中最突出的是Harrow,Hassidim和Lloyd(HHL)。11线性系统在化学动力学,12个部分分化方程,13个在神经网络中的后传播至关重要,14和图理论分析。15 - 17因此,不能低估量子加速器对求解线性系统的重要性。此外,HHL提供的近似数值解决方案的准确性存在局限性。已有10,18个以前的效果是为了获得由化学动力学模型引起的量子线性系统的准确解决方案。19在uence中显示的一个因素是HHL的准确性是A的条件数(最大幅度特征值与矩阵的最小特征值之比)。此外,限制A的条件数量的预处理以前已知能够优化速度和准确性。18
[1] Arute, F.、Arya, K.、Babbush, R. 等人。使用可编程超导处理器实现量子霸权。《自然》574,505–510(2019 年)。https://doi.org/10.1038/s41586-019-1666-5A。[2] Harrow, A. Hassidim 和 S. Lloyd,“线性方程组的量子算法”,《物理评论快报》103,150502(2009 年)。[3] Yudong Cao 等人,“用于求解线性方程组的量子电路设计”,《分子物理学》110.15-16(2012 年),第 1675–1680 页。arXiv:arXiv:1110.2232v2。[4] Solenov, Dmitry 等人。 “量子计算和机器学习在推进临床研究和改变医学实践方面的潜力。”密苏里医学第 115,5 卷 (2018):463-467。[5] C. Outeiral、M. Strahm、J. Shi、GM Morris、SC Benjamin 和 CM Deane,“量子计算在计算分子生物学中的前景,”WIREs Comput. Mol. Sci.,2020 年 5 月。[6] 王胜斌、王志敏、李文东、范立新、魏志强和顾永健,“量子快速泊松求解器:算法和完整模块化电路设计,”量子信息处理第 19 卷,文章编号:170 (2020)。 [7] H. Abraham 等人,“Qiskit:量子计算的开源框架”,2019 年。 [8] https://quantum-computing.ibm.com/ [9] Sentaurus TM 设备用户指南,Synopsys Inc.,美国加利福尼亚州山景城,2020 年。 [10] https://qiskit.org/textbook/ch-applications/hhl_tutorial.html [11] https://qiskit.org/documentation/stubs/qiskit.quantum_info.state_fidelity
[1] Arute, F.、Arya, K.、Babbush, R. 等人。使用可编程超导处理器实现量子霸权。《自然》574,505–510(2019 年)。https://doi.org/10.1038/s41586-019-1666-5A。[2] Harrow, A. Hassidim 和 S. Lloyd,“线性方程组的量子算法”,《物理评论快报》103,150502(2009 年)。[3] Yudong Cao 等人,“用于求解线性方程组的量子电路设计”,《分子物理学》110.15-16(2012 年),第 1675–1680 页。arXiv:arXiv:1110.2232v2。[4] Solenov, Dmitry 等人。 “量子计算和机器学习在推进临床研究和改变医学实践方面的潜力。”密苏里医学第 115,5 卷 (2018):463-467。[5] C. Outeiral、M. Strahm、J. Shi、GM Morris、SC Benjamin 和 CM Deane,“量子计算在计算分子生物学中的前景,”WIREs Comput. Mol. Sci.,2020 年 5 月。[6] 王胜斌、王志敏、李文东、范立新、魏志强和顾永健,“量子快速泊松求解器:算法和完整模块化电路设计,”量子信息处理第 19 卷,文章编号:170 (2020)。 [7] H. Abraham 等人,“Qiskit:量子计算的开源框架”,2019 年。 [8] https://quantum-computing.ibm.com/ [9] Sentaurus TM 设备用户指南,Synopsys Inc.,美国加利福尼亚州山景城,2020 年。 [10] https://qiskit.org/textbook/ch-applications/hhl_tutorial.html [11] https://qiskit.org/documentation/stubs/qiskit.quantum_info.state_fidelity
量子货币是一种实现数字货币的方式,其中代表货币的“钞票”是量子态。量子货币的想法最早由 Wiesner [ Wie83 ] 提出,自那时起,量子货币就吸引了量子计算研究界的关注。在本文中,我们重点研究可公开验证的量子货币 [ Aar09 ],这意味着任何观察者无需掌握特权信息即可验证钞票的正确性,以及量子闪电 [ Zha19 ],这可以保证铸币厂也无法通过铸造复本钞票作弊。不幸的是,构建可公开验证的量子货币已被证明是相当难以捉摸的。Farhi、Gosset、Hassidim、Lutomirski、Nagaj 和 Shor 表明,即使经过一些自然修改,Wiesner 的量子货币方案也不能用于直接构建可公开验证的方案 [ FGH + 10 ]。第一个真正可公开验证的量子货币候选者是由 Aaronson [ Aar09 ] 以及 Aaronson 和 Christiano [ AC12 ] 提出的,他们分别给出了相对于量子和经典预言机的可公开验证的量子货币构造。不幸的是,这两种构造中预言机的拟议实例后来都被破解了 [ LAF + 10 ] [ CPDDF + 19 ],这使得人们对此类预言机能否在现实世界中安全实施产生了怀疑。Zhandry 对量子闪电的具体构造 [ Zha19 ] 也被 Roberts [ Rob21 ] 破解。最近,Khesin、Lu 和 Shor [ KLS22 ] 的基于格的构造被 Liu、Montgomery 和 Zhandry [ LMZ23 ] 破解。另一方面,已经提出了一些候选方案,但尚未被破译,包括基于结点的构造 [ FGH + 12 ] 和四元数代数 [ Kan18 , KSS21 ]。此外,