思想领袖,例如斯蒂芬·霍金(Stephen Hawking),埃隆·马斯克(Elon Musk)和比尔·盖茨(Bill Gates),警告世界上人工智能的潜在危险,而不是人类控制。AI是否可以演变成科幻小说的噩梦,可以肯定的是,IT和其他未来技术(例如,机器人技术,合成生物学,计算科学,计算科学,纳米技术,量子计算,3D和4D印刷,互联网印刷,认知科学,人类智能,人类智能,驱动器,自我驱动器,自我驱动器,驾驶的自我驱动器,驾驶汽车我们认为在接下来的几十年中是可能的,但它们也可能导致大量失业。财富集中在增加。收入差距正在扩大。失业经济增长似乎是新的规范。资本和技术投资回报率通常比劳动力更好。未来的技术可以取代大部分人工劳动。长期结构性失业是一种惯常的预测。那么我们该怎么办?千年项目开始了多年的国际评估,以了解我们可以做什么:未来工作/技术2050研究在三年内有七个阶段:
•全息金属和分数化的费米液体,S。Sachdev,物理审查信105,151602(2010)(2010年),凝聚态物理学的量子质量理论与Sachdev和Ye的1993年纸张和2010年的div> Sachdev的量子物理学的量子理论从凝结物质物理学中的量子理论产生了直接而广泛的影响。<2010年的论文是第一个指出的“某些平均田间间隙旋转液体”是量子质状态,而没有准粒子激发意识到带电黑洞的低能量量子物理。用“平均田间间隙旋转液体” sachdev提到了现在所谓的syk临界状态。基于A. Georges,O。Parcollet和S. Sachdev的结果,物理评论B 63,134406(2001),Sachdev在2010年的论文中辩称,Syk模型与半经典级别的SYK模型之间的对应关系。这种连接基于普通的普朗克动力学和广泛的零温度熵,这意味着Bekenstein-Hawking黑洞熵并未通过指数较大的基态退化来实现。2015年,基塔夫(加利福尼亚大学圣塔芭芭拉分校的基特(Kitp)会谈)表明,该信件在完全量子级别。近年来,这种联系经历了快速发展,并导致人们了解了在d≥4个时空维度中非苏匹配电荷的黑洞的低能状态的通用通用结构(L.V.iliesiu,S。Murthy和G.J.Turiaci,Arxiv:2209.13608,S。Sachdevarxiv:2304.13744)。,Arxiv:2201.03096。SYK模型也是了解霍金辐射的最新进展的关键测试基础 - 请参阅R. Buosso等。
在1976年引入信息损失问题的四十年中,这是一个目前的想法,现在,在2020年,它已经解决了一个方面。这方面涉及通过在最终辐射状态下执行的操作从黑洞内部恢复初始插入物质状态。Arriving at the solution involved integrating key historical and recent works such as Page's 1993 study of entropies in black hole evaporation, Ryu-Takayanagi's 2006 holographic area relation, Faulkner, Lewkowycz and Maldacena's and Engelhardt and Wall's extensions to the area relations in 2013 and 2015 respec- tively, Penington's work on entanglement wedges in 2019 and Almheiri,Mahajan,Maldacena和Zhao于2019年在岛上的猜想中的工作。本论文回顾了这些选定的作品。
黑洞是量子引力中令人着迷的物体。从相当平凡的初始条件(如坍缩的恒星)开始,大自然能够产生一种将短距离涨落放大到宏观尺寸的几何形状。这种时空的“拉伸”绕过了高能物理与低能物理的威尔逊解耦,使普朗克尺度动力学的深层问题与低能(思想)实验相关。1 事实上,在一对非凡的经典论文 [ 1 , 2 ] 中,斯蒂芬霍金首先论证了这种涨落的拉伸会导致黑洞蒸发,其次认为蒸发过程不符合纯态总是演化为其他纯态的量子力学原理。这个结论通常被称为黑洞信息问题,在霍金发表论文后的近 40 年里,它引发了大量的研究。信息真的丢失了吗?如果没有,那么阻止信息丢失的普朗克干涉的本质是什么?这些问题已经取得了重大进展,但最近的研究强调了我们仍然没有令人满意的答案。这些讲座的目的首先是尽可能多地介绍用于制定和分析这些问题的技术,其次是概述导致最近该主题研究激增的新悖论。我还将讨论一些为解决悖论而提出的建议,但我绝不会进行全面的回顾;我一直尽力将教学法置于完整性之上。当然,在目前如此混乱的领域,我对应该包括哪些材料的看法会有些特殊。一般来说,我试图给出或至少概述事物的“真实”论据。当主题的基础像这里一样受到质疑时,我认为应该尽可能避免草率的逻辑。偶尔,材料的某些细节是新的,但我不会试图引起人们对其的注意,因为这会很尴尬和乏味,而且无论如何,我的“改进”大多是表面的。
该模拟器使用磁场和激光配置来创建类似事件的视界,为模拟黑洞附近的量子隧穿创造条件。该装置希望在实验室环境中展示霍金辐射。量子场操纵器由超导量子比特和纠缠发生器组成。它创建并维持与 ZPE 场相互作用的纠缠态。超导电路(例如量子计算机中使用的电路,例如 transmon 量子比特)用于维持相干性并促进纠缠。具有纠错和稳定机制的量子计算机处理量子态,从而能够有效地从 ZPE 中提取能量。纠错码(例如表面码)用于保护量子信息免受退相干的影响。
上下文。目标。我们解释说,黑洞是量子信息最有效的电容器。因此,预计所有能力高级文明最终都会在其量子计算机中使用黑洞。方法。我们使用用于研究黑洞物理学的方法并应用Drake公式,我们可以估计观察性特征。结果。随附的鹰辐射在粒子物种中是民主的。因此,外星量子计算机将在我们探测器的潜在灵敏度范围内的普通颗粒(例如中微子和光子)中辐射。结论。这是SETI的新途径,包括完全由隐藏粒子物种组成的文明,专门通过重力与我们的世界相互作用。
如果你一直在关注索菲亚的发展,你可能会陷入两种观点之一:要么对她栩栩如生的特征和能力感到惊叹,对她带来的机会感到兴奋;要么担心她会变得有知觉,害怕这一切会带来什么后果。毕竟,埃隆·马斯克和斯蒂芬·霍金教授等人一直在警告不受控制的人工智能的危险,马斯克称其为“人类文明存在的根本风险”。其他人则更为乐观,期待探索人工智能的可能性。在微软首席执行官萨蒂亚·纳德拉的新书《刷新》的前言中,比尔·盖茨表示,这项技术“即将使我们的生活更加高效和富有创造力”。Facebook 的马克·扎克伯格对此表示赞同,并指出他对人工智能可能带给我们的未来充满“乐观”。
人工智能 (AI) 领域的发展是“机器适应新情况、处理新兴情况、解决问题、回答问题、设计计划和执行各种其他功能的能力,这些功能需要人类通常具有的某种程度的智能 (Coppin, 2004, p. 4)”,在第四次工业革命 (Vázquez-Cano, 2021) 之后全速前进。几种具有惊人性能的创新工具相继推出;例如,最新版本的 ChatGPT (GPT-4o) 就在我们完成本文之前发布。然而,正如理论物理学家斯蒂芬霍金曾经说过的那样,“强大人工智能的崛起将是人类有史以来最好的事情,也可能是最糟糕的事情。我们还不知道哪一个”。
摘要 有三种方法可以探测到虫洞:负温度、霍金/幻影辐射和 K α 铁发射线。本文讨论了这三种方法是否可用来利用当今的技术探测虫洞,如果可用,哪种方法最好,哪种方法最差。事实证明,所有这些方法都有其缺陷和不切实际之处。在查看了所有证据并将其与我们目前拥有的能力进行比较后,显然存在最佳和最差方法。探测可能的虫洞候选者的最佳方法是使用间接方法探测辐射。间接探测辐射是迄今为止最实用、缺点最少的方法。最差的探测方法是通过探测负温度,因为它有许多不切实际的需要才能工作。
本报告回顾了通过 AdS/CFT 对偶的视角理解黑洞动力学和解决黑洞信息悖论的最新进展。从黑洞蒸发和信息的考虑介绍了悖论的起源。回顾了 AdS/CFT 对偶的主要原理,其动机是弦理论中对偶的起源以及 AdS 时空中的标量动力学。应用 AdS/CFT 对偶的全息原理将非引力量子理论转化为高维引力理论,计算蒸发黑洞的霍金辐射的纠缠熵以显示是否遵循幺正佩奇曲线。最后,利用对量子极值曲面演化的最新见解来测试 AdS 2 中的黑洞辐射系统是否遵循幺正性。
