Primary Healthcare System Enhancing Project (2024 to 2028) in Sri Lanka, supported by the World Bank ......................................................................................................................................... 20
由 Emerald 出版。这是已获作者认可的手稿,发行方式为:知识共享署名许可 (CC:BY 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/jamr-10-2024-0366。请参阅任何适用的出版商使用条款。
3。IOMT:前进的连接护理..................................................................................................................................................................................................................................................................................................................................................... 87 6IOMT:前进的连接护理..................................................................................................................................................................................................................................................................................................................................................... 87 6
我们将提供空间供您展示您的产品。如有任何疑问或想安排会议,请随时通过 pjbinu@cdac.in 与我们联系,Binu PJ,组织秘书,科学家 E/联合主任,CDAC Trivandrum 健康技术组,电话:9496236198。
“ AI的准确而复杂的图片(与其流行的描述竞争)在开始时,由于难以钉住人工智能的精确定义而受到阻碍。……奇怪的是,缺乏精确的,普遍接受的人工智能定义可能帮助该领域以不断加剧的速度发展,开花和前进。AI的从业人员,研究人员和开发人员的指导下是一种粗略的方向感,并且必须“继续下去”。尽管如此,定义仍然很重要,而尼尔斯·尼尔森(Nils J. Nilsson)提供了一个有用的定义:“人工智能是致力于使机器变得聪明的活动,而智能是使实体能够在其环境中适当和远见的质量。” [1]” [2]
摘要 - 专门的深度学习(DL)加速器和神经形态处理器的出现为将深度和尖峰神经网络(SNN)算法应用于医疗保健和生物医学应用的新企业带来了新的机会。这可以促进医学互联网系统(IoT)系统和护理点(POC)设备的进步。在本文中,我们提供了一个教程,描述了如何使用各种技术,包括新兴的回忆设备,可编程的门阵列(FPGA)和互补的金属氧化物半导体(CMOS),可用于开发有效的DL加速器,以解决各种诊断诊断,模式识别的诊断,信号过程和信号过程中的各种问题。此外,我们探讨了尖峰神经形态处理器如何补充其DL对应物以处理生物医学信号。该教程通过应用于医疗保健领域的大量神经网络和神经形态硬件的大量文献进行了研究。我们通过执行将传感器融合信号处理任务与计算机视觉相结合的传感器融合信号处理任务来标记各种硬件平台。在推理潜伏期和能量方面进行了专用神经形态处理器和嵌入AI加速器的比较。最后,我们对领域的分析进行了分析,并分享了各种加速器和神经形态处理器引入医疗保健和生物医学领域的优势,缺点,挑战和机遇的观点。
摘要在为无行为能力的患者做出替代判断时,代理人经常努力猜测患者有能力会想要什么。代理人也可能因(唯一)做出这种决定的责任而感到痛苦。为了解决此类问题,已经提出了一种患者偏好预测因子(PPP),该预测因素将使用算法从人群级别的数据中推断出单个患者的治疗偏好,以了解具有相似人口统计学特征的人的已知偏好。然而,批评家们已经表明,即使这种PPP平均比人类替代者更准确,在识别患者偏好方面,拟议的算法仍然无法尊重患者(以前的)自主权,因为它会借鉴“错误的”数据:对于个人而言,这些数据不适合个人的数据,因此他们不适合他们的挑战,并且他们的实际原因是他们的实际原因,或者是实际的,或者是实际上的,或者是实际上的,或者是实际的,或者是实际的,或者是实际的,或者是实际上所依据的,或者是实际的原因。在船上受到这样的批评,我们在这里提出了一种新方法:个性化的患者偏好预测因子(P4)。P4基于机器学习的最新进展,该技术允许包括大型语言模型在内的技术更便宜,更有效地“微调”在特定于人的数据上。与PPP不同,P4将能够从实际上特定于其特定的材料(例如先前的治疗决策)中推断出单个患者的偏好。因此,我们认为,除了在个体水平上比以前提出的PPP更准确,P4的谓词还将更直接地反映每个患者自身的原因和价值观。在本文中,我们回顾了人工智能研究中的最新发现,这些发现表明P4在技术上是可行的,并认为,如果它是开发和适当部署的,则应缓解一些基于自主的主要关注原始PPP的批评者的关注。然后,我们考虑对我们的提案的各种异议,并提供一些暂定的答复。
1。使用AI获得知情的患者同意:从患者那里获得知情同意是执行任何医疗程序之前最重要的一步。但是,根据《印度妇产科和妇科杂志》的报道,在获得同意书之前,只有25%的印度患者对手术进行了完整的简要介绍。此外,在印度的许多医院中,获得知情同意的过程被委派给了像护士这样的医院工作人员,而不是医生本人,以节省后者的时间。此外,许多患者无法理解起草同意书的语言,并且主要签署该表格仅为形式。简要地说,签署的同意书并不意味着已将信息传达给患者。AI来营救医生和患者。除了英语外,还可以用白话语言构建互动聊天机器人,这可以回答所有患者的问题并解决他对在他身上执行的程序的所有恐惧,这对于获得患者的知情同意可以走很长一段路。
24种类型的偏头痛类型诊断(偏头痛的典型光环,不含光环的偏头痛,不含偏头痛的典型光环,家族性偏瘫偏头痛,零星偏瘫偏头痛,基底型Aura,其他)
