由 Emerald 出版。这是已获作者认可的手稿,发行方式为:知识共享署名许可 (CC:BY 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/jamr-10-2024-0366。请参阅任何适用的出版商使用条款。
• ML 的一个子集 • 通常利用人工神经网络 (ANN) 架构 • 结构化和非结构化数据(图像、文本、信号等) • 需要大量的训练数据和计算能力
我们将提供空间供您展示您的产品。如有任何疑问或想安排会议,请随时通过 pjbinu@cdac.in 与我们联系,Binu PJ,组织秘书,科学家 E/联合主任,CDAC Trivandrum 健康技术组,电话:9496236198。
这项工作属于版权。所有权利都是由出版商唯一的,全部由材料的全部或部分授权的,特别是涉及翻译,重新使用,重新使用,插图,朗诵,广播,对微观或以任何其他物理方式或任何其他物理方式,以及传输或信息的存储和电子设置,计算机或计算机或相似的方法,或者以任何其他物理方式的复制,或者使用。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。就本文包含的材料或可能已犯的任何错误或遗漏而言,出版商,作者或编辑都没有提供任何明示或暗示的保修。出版商在已发表的地图和机构之后的管辖权索赔方面保持中立。
抽象的大语言模型(LLM)已成为医疗保健领域的变革性工具,在自然语言理解和产生中表现出了显着的能力。然而,它们在数值推理方面的熟练程度,尤其是在临床应用中的高风险领域,仍然没有得到充实的态度。数值推理在医疗保健应用中至关重要,影响患者的结果,治疗计划和资源分配。本研究研究了在医疗保健环境中数值推理任务中LLM的计算准确性。使用1,000个数值问题的策划数据集,包括诸如剂量计算和实验室结果解释之类的现实世界情景,根据GPT-3体系结构进行了精制LLM的性能。该方法包括及时的工程,事实检查管道的集成以及正规化技术以增强模型的准确性和泛化。关键指标(例如精度,回忆和F1得分)用于评估模型的功效。结果表明总体准确性为84.10%,在多步推理中直接的数值任务和挑战方面的性能提高了。事实检查管道的整合提高了准确性11%,强调了验证机制的重要性。这项研究强调了LLM在医疗保健数值推理中的潜力,并确定了进一步完善的途径,以支持临床环境中的关键决策。当它们成为这些发现旨在为医疗保健的可靠,可解释和上下文相关的AI工具做出贡献。关键字大语言模型(LLMS)·变压器架构·及时工程·精确度·精确·回忆·F1-SCORE 1简介大语言模型(LLMS)已成为人工智能领域的重大进步,证明了在处理和生成人类语言中的显着能力。这些模型由深度学习技术提供支持,在广泛的数据集上进行了培训,并有可能了解语言,细微差别和语言的复杂性。
1。使用AI获得知情的患者同意:从患者那里获得知情同意是执行任何医疗程序之前最重要的一步。但是,根据《印度妇产科和妇科杂志》的报道,在获得同意书之前,只有25%的印度患者对手术进行了完整的简要介绍。此外,在印度的许多医院中,获得知情同意的过程被委派给了像护士这样的医院工作人员,而不是医生本人,以节省后者的时间。此外,许多患者无法理解起草同意书的语言,并且主要签署该表格仅为形式。简要地说,签署的同意书并不意味着已将信息传达给患者。AI来营救医生和患者。除了英语外,还可以用白话语言构建互动聊天机器人,这可以回答所有患者的问题并解决他对在他身上执行的程序的所有恐惧,这对于获得患者的知情同意可以走很长一段路。
摘要在为无行为能力的患者做出替代判断时,代理人经常努力猜测患者有能力会想要什么。代理人也可能因(唯一)做出这种决定的责任而感到痛苦。为了解决此类问题,已经提出了一种患者偏好预测因子(PPP),该预测因素将使用算法从人群级别的数据中推断出单个患者的治疗偏好,以了解具有相似人口统计学特征的人的已知偏好。然而,批评家们已经表明,即使这种PPP平均比人类替代者更准确,在识别患者偏好方面,拟议的算法仍然无法尊重患者(以前的)自主权,因为它会借鉴“错误的”数据:对于个人而言,这些数据不适合个人的数据,因此他们不适合他们的挑战,并且他们的实际原因是他们的实际原因,或者是实际的,或者是实际上的,或者是实际上的,或者是实际的,或者是实际的,或者是实际的,或者是实际上所依据的,或者是实际的原因。在船上受到这样的批评,我们在这里提出了一种新方法:个性化的患者偏好预测因子(P4)。P4基于机器学习的最新进展,该技术允许包括大型语言模型在内的技术更便宜,更有效地“微调”在特定于人的数据上。与PPP不同,P4将能够从实际上特定于其特定的材料(例如先前的治疗决策)中推断出单个患者的偏好。因此,我们认为,除了在个体水平上比以前提出的PPP更准确,P4的谓词还将更直接地反映每个患者自身的原因和价值观。在本文中,我们回顾了人工智能研究中的最新发现,这些发现表明P4在技术上是可行的,并认为,如果它是开发和适当部署的,则应缓解一些基于自主的主要关注原始PPP的批评者的关注。然后,我们考虑对我们的提案的各种异议,并提供一些暂定的答复。
2024 年 6 月 8 日 — 第一批聊天机器人(最著名的是 Eliza,由 Joseph Weizenbaum 于 1966 年发明)能够尝试图灵测试。基本的模式匹配技术...
生活的各个领域的数字化,无论是在工作,在家庭环境中,在个人或公共交通工具中,都在稳步发展。在2018年已经超过了40亿人口的限额。使用手机,目前有76亿人口,目前有76亿人口。超过30亿人使用社交媒体,并在十分之九的情况下通过智能手机这样做(请参阅[GDR18])。这一发展在医疗保健领域仍在继续。从“自我追踪”的趋势开始,但也从有效利用收集的医疗数据的需求增加。尤其是在医疗保健领域,无论您当前的位置和时间如何,都可以访问自己的医疗数据。在这种情况下,后端系统将敏感和个人数据存储从脉冲频率,睡眠节奏记录到药物计划和医疗处方。后端系统将用户与多个服务联系起来,因此充当通信集线器。被妥协的应用程序可以无意间披露用户的整个数字寿命,这可能会导致高财务损失。遵守适当的安全标准,尤其是在后端系统领域,可以降低风险,甚至可能阻止这种风险。已经在开发阶段,制造商应非常负责任地计划后端系统如何处理,存储和保护个人,在这种情况下,医疗和其他敏感数据。
Primary Healthcare System Enhancing Project (2024 to 2028) in Sri Lanka, supported by the World Bank ......................................................................................................................................... 20
