摘要 微生物成分对胎儿大脑有一系列直接影响。然而,人们对介导这些影响的细胞靶点和分子机制知之甚少。神经祖细胞 (NPC) 控制大脑的大小和结构,了解调节 NPC 的机制对于理解大脑发育障碍至关重要。我们发现心室放射状胶质细胞 (vRG),即主要的 NPC,是抗生素治疗产妇肺炎期间产生的细菌细胞壁 (BCW) 的靶点。BCW 通过缩短细胞周期和增加自我更新来增强 vRG 的增殖潜力。扩增的 vRG 繁殖以增加所有皮质层的神经元输出。值得注意的是,识别 BCW 的 Toll 样受体 2 (TLR2) 位于 vRG 中初级纤毛的底部,BCW-TLR2 相互作用抑制纤毛发生,导致 Hedgehog (HH) 信号的解除抑制和 vRG 扩增。我们还表明,TLR6 是 TLR2 在此过程中的重要伙伴。令人惊讶的是,在健康条件下,仅 TLR6 就需要设定皮质神经元的数量。这些发现表明,来自 TLR 的内源性信号在新皮质正常发育过程中抑制皮质扩张,而 BCW 通过 TLR2/纤毛/HH 信号轴改变大脑结构和功能来拮抗该信号。
简介生长板 - 位于长骨边缘的薄盘状软骨 - 为产后骨骼生长提供了主要驱动力(1)。从结构上讲,生长板由3个形态学 - 静止,增殖和肥厚的区域组成,具有具有克隆起源的软骨细胞的特征柱(2,3)。生长板是内侧软骨骨形成的必不可少的结构,该过程逐渐被骨骼逐渐取代(1,2)。位于产后生长板顶部的静息区载有慢循环软骨细胞,表达甲状旁腺激素相关蛋白(PTHRP)(4),该蛋白(4)提供了生长板中所有其他软骨细胞的来源。这些“静止”的软骨细胞通过不对称分裂进入细胞周期,成为增殖的软骨细胞,分化为表达印度刺猬(IHH)的有丝虫后自生型前软骨细胞(IHH),变成肥大的软骨细胞的生长板和死亡的骨骼或因素而变成骨的底部或因素而变成骨的底部或因素而转变为骨的底部,因为主要海绵中的成骨细胞。
摘要:髓母细胞瘤(MB)是一种罕见的癌症,尽管一种更常见的小儿脑肿瘤,每年在美国影响350-500名儿童。MBS分为IV级肿瘤,并分为四个亚组,其中声波刺猬激活(SHH激活)组负责大多数成年MBS。对成年人中MB的理解和所有年龄段的遗传特征缺乏清晰度。Thismeta-Analysis的目的是使用CBIOPORTAL数据库研究,该数据库是170个被诊断为髓母细胞瘤SHH激活亚组的患者的遗传特征,并修改与MB相关的基因相互作用如何有助于当前对疾病机制和潜在治疗靶标的了解。这张纸揭示了MB与与MB无关的多种遗传变化之间的可能相关性。结果表明了对肿瘤的形成和进化的见解,例如突出血管异常,这会影响肿瘤的转移潜力。E也是MB与组织学,功能和发育异常之间的高相关性,包括心脏发育问题,肾脏问题和其他形式的癌症,揭示了该肿瘤的遗传复杂性并提出可能的临床意义。
这位患者出生于1933年,是一名90岁的女性,具有过去的动脉高血压病史。她的癌症史始于鼻尖皮肤病变,随后她是皮肤科医生,并进行了局部治疗。两年后,病变开始迅速生长,伴有右鼻子沟的潜在肿胀,骨骼变形和鼻金字塔的大溃疡。核心活检于2021年9月进行,显示基底细胞癌(结节性)。该患者去了另一家医院,并被一位新的皮肤科医生拜访,该医生报告了涉及右Alar缘,鼻尖和右鼻腔侧壁的3厘米病变的存在。鉴于在没有整容畸形的情况下对手术切除的广泛疾病过敏,她被认为不适合手术,被称为医学肿瘤学。2021年9月7日,她被医学肿瘤学家看到,并开始使用Sonidegib(每天200毫克)(图1和2; 2021年9月2日)。她的最初部分反应,BCC大小的临床减少(图3; 2022年8月),除了1级疲劳和1级dydysgeusia外,副作用最小。部分缓解一直持续到2022年12月,没有明显的毒性,然后自2023年1月以来就在临床上进行。
来自Astra Zeneca和GlaxoSmithKline R&D;以及来自Astra Zeneca,Bayer,Boehringer Ingelheim,BMS,CSL Behring,Endeavor Biomedicines,纤维基因,Galapagos,Galapagos,Galecto,Galaposmithkline,GlaxoSmithkline,Iqvia,Iqvia,Iqvia,Iqvia,Iqvia,Pfizer,Pfizer,Pfizer,Pfizer,Rocheight,Roche,Sanofi-i-aventis,sanefict and threvent and threvent and santerick and Cornery和Santerick,以及咨询或发言人费。他得到了NIHR临床医生奖学金(NIHR参考:CS-2013-13-017)英国呼吸研究主席(C17-3)的支持。
缩写:AE,不利事件;阿拉特,拉丁美洲胸部协会; ATS,美国胸腔学会; BMI,体重指数; CT,计算机断层扫描; DL CO,肺部碳一氧化碳的扩散能力;心电图,心电图; ERS,欧洲呼吸社会; FVC,强迫生命力; HRCT,高分辨率CT; IPF,特发性肺纤维化; JRS,日本呼吸社会; PBO,安慰剂; PO,口头; PPF,进行性肺纤维化; QD,每天一次; QGG,定量地面玻璃; QILD,定量间质肺疾病; QLF,定量肺纤维化; SAE,严重的不利事件; SD,标准偏差;嘘,声音刺猬; Smo,平滑; TEAE,治疗急性不良事件; TLC,总肺容量;加利福尼亚大学圣地亚哥分校; W12,第12周。
基底细胞癌(BCC)可以通过手术切除或辐射高度治愈。在极少数情况下,BCC可能是局部破坏性的,也可能难以手术去除。用Vismodegib或Sonidegib的刺猬抑制(HHI)诱导50–60%的响应率。长期毒性包括肌肉痉挛和体重减轻,导致剂量降低。此回顾性图表审查还研究了COQ10和补充钙补充对HHI药物在2012年至2022年接受HHI药物治疗的患者的影响。我们审查了用Vismode-Gib或Sonidegib治疗的局部晚期或转移性BCC的成年患者的图表,主要用于无进展生存率(PFS)。次要目标包括总体生存,特定于BCC的生存,停止的时间和原因,总回应率,安全性和耐受性,COQ10和钙补充剂的使用以及保险范围。在55例可评估结果的患者中,有34例(61.8%)具有整体临床益处,有25例(45.4%)具有完全反应,而9(16.3%)的部分反应。在14(25.4%)和7(12.7%)中发现了稳定的疾病。 对治疗反应的34例患者有9例重复。 被HHI重新收录的患者可以再次反应。 5年(5年)总体BCC特异性生存率的中位数为89%。 Vismodegib和Sonidegib的剂量减少或终止,分别为59%,案例为24%,分别为30%和9%的病例。 具有COQ10和补充钙的补充,只有17%的剂量减少,而没有剂量的42%。在14(25.4%)和7(12.7%)中发现了稳定的疾病。对治疗反应的34例患者有9例重复。被HHI重新收录的患者可以再次反应。5年(5年)总体BCC特异性生存率的中位数为89%。Vismodegib和Sonidegib的剂量减少或终止,分别为59%,案例为24%,分别为30%和9%的病例。具有COQ10和补充钙的补充,只有17%的剂量减少,而没有剂量的42%。HHI对于治疗晚期BCC非常有效,但可能需要减少给药。sonidegib比Vis-Modegib更好地容忍。COQ10和补充钙可以有效预防肌肉痉挛。COQ10和补充钙可以有效预防肌肉痉挛。
摘要:具有非共线自旋排列的磁性材料由于其在新兴的计算技术和记忆设备中的潜在用途而引起了极大的兴趣。竞争的磁相互作用,即磁挫败感,是非连续性磁性结构的主要起源之一。虽然沮丧的系统主要是在磁绝缘子中研究的,但将磁性挫败与电气连接率相结合可以同时进行电荷和自旋操作,这对于电子设备的设计至关重要。在这里,我们提出了一个新的金属间实心溶液LAMN 2 -x au 4+ X,其晶体结构可容纳磁性沮丧的MN方形网。粉末中子衍射和第一原理分析提供了证据表明,金属lamn 2-x au 4+ x相可以托管以挫败感驱动的刺猬旋转涡流晶体为一种罕见的非胶流磁状态,以前是针对铁pnictides的唯一观察到的。■简介
神经干细胞增殖与神经元分化之间的平衡对于适当发展神经系统至关重要。Sonic刺猬(SHH)依次促进细胞增殖和神经表型的规范,但是负责从有丝分裂到神经源的发育转变的信号传导机制尚不清楚。在这里,我们表明,SHH通过瞬态受体电势阳离子阳离子c构件C成员3(TRPC3)(TRPC3)通过Ca 2+涌入来增强Ca 2+的活性,并通过Ca 2+涌入发育于Ca 2+涌入,并以发育阶段相互依赖的阶段相关的方式从细胞内存储中释放。这种睫状Ca 2+的活性反过来又通过下调SOX2表达和神经源性基因的上调表达来拮抗神经干细胞中的规范,增生性SHH信号,从而实现了神经元分化。这些发现表明,神经细胞睫状信号传导中的SHH-CA 2+依赖性开关触发了SHH作用从规范有限源性到神经源的开关。在该神经源信号轴上鉴定的分子机制是治疗脑肿瘤和神经发育障碍的潜在靶标。
摘要:Hedgehog (HH) 信号网络是无脊椎动物和脊椎动物胚胎发育的主要调节器之一。与其他网络(如 NOTCH 和 WNT)一起,HH 信号通过时间和空间调节细胞增殖和分化来指定早期模式和极性事件以及随后的器官形成。然而,已在多种恶性疾病中发现 HH 信号的异常激活,它对肿瘤细胞的增殖、存活和治疗耐药性有积极影响。针对 HH 通路的抑制剂已在临床前癌症模型中进行了测试。HH 通路在其他血液恶性肿瘤中也过度活跃,包括 T 细胞急性淋巴细胞白血病 (T-ALL)。本综述旨在总结我们对正常 T 细胞淋巴细胞生成和 T-ALL 中 HH 通路的生物学作用和病理生理学的了解。此外,我们将讨论可能扩大针对 T-ALL 中的 HH 通路的药物临床用途的潜在治疗策略。
