©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
DYRK1B 作为对 Smoothened 抑制剂具有抗性的 Hedgehog/GLI 依赖性癌细胞的治疗靶点
摘要:具有非共线自旋排列的磁性材料由于其在新兴的计算技术和记忆设备中的潜在用途而引起了极大的兴趣。竞争的磁相互作用,即磁挫败感,是非连续性磁性结构的主要起源之一。虽然沮丧的系统主要是在磁绝缘子中研究的,但将磁性挫败与电气连接率相结合可以同时进行电荷和自旋操作,这对于电子设备的设计至关重要。在这里,我们提出了一个新的金属间实心溶液LAMN 2 -x au 4+ X,其晶体结构可容纳磁性沮丧的MN方形网。粉末中子衍射和第一原理分析提供了证据表明,金属lamn 2-x au 4+ x相可以托管以挫败感驱动的刺猬旋转涡流晶体为一种罕见的非胶流磁状态,以前是针对铁pnictides的唯一观察到的。■简介
摘要:针对 HH 通路治疗侵袭性脑癌、乳腺癌、胰腺癌和前列腺癌的研究已经进行了几十年。人们早已在恶性胶质瘤患者中发现了 Gli 基因扩增,从那时起,针对 HH 通路相关分子的抑制剂已成功进入临床阶段,其中几种已获得 FDA 批准。尽管这一成功率意味着取得了一定的进展,但临床上使用的 HH 通路抑制剂无法治疗转移性或复发性患者。这主要是由于异质性肿瘤细胞对抑制剂产生了耐药性,以及无法有效靶向肿瘤微环境 (TME)。还报告了低钠血症、腹泻、疲劳、闭经、恶心、脱发、味觉异常和体重减轻等严重副作用。此外,已知 HH 信号参与调节免疫细胞成熟、血管生成、炎症以及巨噬细胞和髓系抑制细胞的极化。确定可针对不同肿瘤发展和进展水平的关键机制对于解决各种临床问题至关重要。因此,当前的研究重点包括了解 HH 如何控制 TME,以开发 TME 改变和组合靶向策略。在本综述中,我们旨在讨论靶向 HH 信号分子的利弊,了解治疗耐药性的机制,揭示 HH 通路在抗肿瘤免疫反应中的作用,并探索开发免疫检查点抑制剂与 HH 通路抑制剂的潜在联合治疗以靶向 HH 驱动的癌症。
摘要:Hedgehog (Hh) 信号调节肠道发育和体内平衡。人们已研究 Hh 信号在癌症中的作用多年,但其在结直肠癌 (CRC) 中的作用仍存在争议。越来越清楚的是,“经典”Hh 通路(其中配体与受体 PTCH1 结合启动信号级联,最终激活 GLI 转录因子)主要以旁分泌方式组织,无论是在健康结肠中还是在 CRC 中都是如此。此类经典 Hh 信号主要起肿瘤抑制作用。此外,基质 Hh 信号在肠道中具有复杂的免疫调节作用,可能对致癌作用产生影响。相反,非经典 Hh 激活可能在 CRC 肿瘤细胞的子集中具有促肿瘤作用。在这篇综述中,我们试图总结目前对 CRC 中 Hh 通路的了解,重点关注基质中经典 Hh 信号对肿瘤的抑制作用。尽管在 CRC 和其他实体癌中使用 Hh 抑制剂的临床试验结果令人沮丧,但我们认为,更深入地了解 Hh 信号传导可能会允许在未来利用这一关键的形态发生途径进行癌症治疗。
髓母细胞瘤 (MB) 是一种高度侵袭性的儿童小脑肿瘤。在所有 MB 诊断中,约有 30% 的患者观察到 Hedgehog (HH) 通路过度活跃,因此,药物阻断是临床治疗这种恶性肿瘤的一种有前途的治疗策略。目前已开发出两类主要 HH 抑制剂:Smoothened (SMO) 受体上游拮抗剂和 GLI 转录因子下游抑制剂。不幸的是,这些分子中的许多药理学特性较差,限制了它们在 MB 临床试验中的研究。在这篇小型综述中,我们重点介绍了为 SMO 和 GLI 抑制剂设计的药物输送系统,这是一种提高其生物利用度和穿过血脑屏障 (BBB) 效率的有效方法,这是 MB 治疗的主要挑战之一。
Hedgehog (HH) 通路在胚胎发育、组织稳态和致癌作用中起着至关重要的作用 [1,2]。HH 配体通过与受体 patched 1 同源物 (PTCH1) 结合来激活信号转导。在没有 HH 配体的情况下,PTCH1 会阻止 Smoothened (SMO) 将信号传递给下游胶质瘤相关致癌基因同源物 (GLI) 转录因子。HH 配体与 PTCH1 结合,解除 PTCH1 对 SMO 的抑制,使 SMO 向下游效应物 GLI 发出信号,GLI 通过特定的基因组 DNA 序列 (TGGGTGGTC) 激活靶基因 [3,4]。通过 HH–PTCH1–SMO 轴激活 GLI 蛋白被视为典型的 HH 信号通路。除经典途径外,一些分子可以绕过配体-受体信号轴来激活 GLI,这些类型的调节被视为非经典 HH 信号。非经典 HH 信号存在于恶性疾病中。据报道,KRAS 信号 [ 5 , 6 ]、转化生长因子 β (TGF β ) [ 7 ]、AKT [ 8 ]、蛋白激酶 C (PKC) [ 9 ] 和 SOX2-溴结构域蛋白 4 (BRD4) [ 10 ] 通过非经典途径调节 HH 信号。化疗广泛应用于癌症治疗,并显著改善患者的预后。然而,并非所有患者都能从中受益。化疗耐药成为癌症治疗的一大障碍,因为内在耐药发生在治疗开始时甚至治疗之前,或在治疗初次起效后发生获得性耐药,导致复发[11,12]。铂类、5-氟尿嘧啶 (5-FU) 和吉西他滨是胃癌、结直肠癌和胰腺癌化疗中最常用的药物,其耐药机制已被研究。化疗耐药的机制包括癌症干细胞 (CSC)、肿瘤微环境和 ATP 结合盒 (ABC) 转运蛋白家族蛋白[13-15]。我们小组研究了胃肠道癌症的耐药性,发现 HH 通路是导致耐药性的原因之一。本综述重点介绍 HH 通路与胃肠道癌症耐药性之间关系的最新进展,并研究可能克服 HH 介导耐药性的新药物和策略。
主要纤毛是一个信号室,通过其蛋白质,脂质和第二信使组成的变化来解释刺猬信号。在这里,我们将纤毛的接近标记与定量的质谱法结合了响应于刺猬的纤毛蛋白质组的时间依赖性变化。这种方法正确地识别了已知经历刺猬调节的睫状重新分布的三个因素,并揭示了两种此类额外的蛋白质。首先,我们发现cAMP依赖性蛋白激酶(PKA)的调节亚基迅速退出纤毛,以及G蛋白 - 耦合受体GPR161响应HEDGEHOG,我们建议GPR161/PKA模块的感觉和camp Signals Camp Signals Signals Signals CILAIRY PKA。第二,我们将磷酸酶圣丁素识别为细胞类型 - 刺猬信号的特定调节剂,该刺猬信号传导在途径激活时进入原发性纤毛。定量睫状蛋白质组谱分析的广泛适用性有望快速表征纤毛病及其潜在信号故障。
摘要 微生物成分对胎儿大脑有一系列直接影响。然而,人们对介导这些影响的细胞靶点和分子机制知之甚少。神经祖细胞 (NPC) 控制大脑的大小和结构,了解调节 NPC 的机制对于理解大脑发育障碍至关重要。我们发现心室放射状胶质细胞 (vRG),即主要的 NPC,是抗生素治疗产妇肺炎期间产生的细菌细胞壁 (BCW) 的靶点。BCW 通过缩短细胞周期和增加自我更新来增强 vRG 的增殖潜力。扩增的 vRG 繁殖以增加所有皮质层的神经元输出。值得注意的是,识别 BCW 的 Toll 样受体 2 (TLR2) 位于 vRG 中初级纤毛的底部,BCW-TLR2 相互作用抑制纤毛发生,导致 Hedgehog (HH) 信号的解除抑制和 vRG 扩增。我们还表明,TLR6 是 TLR2 在此过程中的重要伙伴。令人惊讶的是,在健康条件下,仅 TLR6 就需要设定皮质神经元的数量。这些发现表明,来自 TLR 的内源性信号在新皮质正常发育过程中抑制皮质扩张,而 BCW 通过 TLR2/纤毛/HH 信号轴改变大脑结构和功能来拮抗该信号。