我们每个人都记得第一天爬进 Lois Erickson 总裁“那架飞机”的机舱,发现一个全新的世界向我们敞开。在 Piper Cherokee 180 上完成了四个小时的培训后,我上完课回来,丈夫兴奋地迎接我,告诉我“我们”刚刚买了一架很棒的飞机,叫做 140。我的第一个念头是:“那到底是什么?”想象一下,当他打开机库门,我发现这架飞机的机翼在机身错误的一侧,前轮在背面时,我有多惊讶。正是在那时,我了解到了一种名为赛斯纳 140 的飞机。随着飞行杂志在我们家中逐渐堆积,我了解到了比奇、穆尼、卢斯科姆、泰勒、直升机、实验飞机等等。一个全新的、令人兴奋的世界等着我去学习和体验。当我学会成为一名安全的飞行员时,我很幸运地得到了现场所有男士的支持和鼓励。FBO 的教官、飞行服务站的工作人员、飞行员休息室的公司飞行员,他们都在培养我,让我踏上了人生中最伟大的冒险之旅。你知道,我是最初的“小鸟”,因为当时我是威斯康星州西部唯一的女性飞行学员。当我终于获得了梦寐以求的证书时,考官告诉我,我需要联系并加入
2020 年似乎是疯狂的驱动力,它几乎影响了我们生活的方方面面——从我们认为理所当然的小事到让我们夜不能寐的重大健康问题。当我们试图理解并适应已经成为新常态的事情时,Wind Systems 也在努力适应。当我们整理 7 月刊时,我们意识到许多读者仍在家工作。这意味着我们每月的印刷版将放在收发室或邮箱里积满灰尘。因此,我们决定保留 7 月份的大部分内容,并将其发布在您手中的 7 月/8 月合并刊中。您从中得到的主要收获是,您将获得大量令人兴奋的额外内容,让您随时了解风电行业的最新动态。我们的八月刊一直是年度市场展望报告中的附加内容,尽管世界对此问题更为关注,但本期合并刊物仍然包含有关风能未来各个方面的文章,尤其是美国风能的未来。行业以及州和地方政府如何对待风能是本期的重要内容。美国风能协会对我们的市场展望总是有很大的帮助。我们的附加内容以美国风能协会的 Celeste Wanner 的一篇文章开始,她在文章中讨论了风能如何为财富 1000 强公司打造未来。北卡罗来纳州正忙于为海上风电项目寻找钢材。在 Elizabeth Ouzts 的一篇文章中,您将了解到北卡罗来纳州如何迈出开展海上风电研究的第一步。但这并不是本期的全部内容。除了我们的附加内容外,七月/八月刊还探讨了润滑、涡轮机基础等内容。在 COVID-19 疫情面前,安全仍然是行业各方面都十分关注的问题,因此请务必阅读 Simon Hayes 的文章,他在文章中分享了在冠状病毒疫情面前进行培训的见解。在我们的对话中,Pure Safety Group 的 Erica Cole 讨论了她的公司如何处理从坠落防护到病毒防护的安全问题。市场展望问题一直是我最喜欢的问题之一,因为它真正突出了风能的前景以及未来前景。而这期综合性文章只会为您带来更多您需要了解的风能知识。请尽情享受,一如既往,感谢您的阅读!
2018年底,基因改造双胞胎露露和娜娜诞生了。他们的DNA甚至在胚胎阶段就被修改了。这种行为是现行法律法规所禁止的,包括中国在内。然而,研究员贺建奎在实验室中使用了新的 CRISPR-Cas9 技术来修改婴儿的遗传基因;这被称为种系改造。人类的这种基因增强引发了许多伦理、道德和实际问题。我们对此有何看法?将其合法用于医疗目的是否能给我们带来根除遗传性疾病的希望?我们能为子孙后代做决定吗?我们所能接受的底线在哪里?拉特瑙研究所等 11 个组织主动就这些问题发起了社会对话。基于文献研究、访谈和情景研讨会,我们概述了历史和国际背景、迄今为止的讨论以及发挥作用的社会和道德考虑。关于修改遗传 DNA 的讨论是关于我们希望给予生物技术改进的空间的更广泛讨论的一部分。我们是否了解新技术的后果和风险?它们如何改变我们对美好健康生活的形象及其界限?新技术发展各有特点,但也引发反复出现的问题。在“创造生命”这一主题下,我们对胚胎研究、人与动物结合以及生殖系改造的发展进行了研究。这一次又一次地表明,追求可行性也会使人们变得脆弱。为了确保有关修改遗传 DNA 的社会和政治辩论考虑到不同的观点和价值观,我们列出了最重要的考虑因素和论点。本报告包含有关该主题的广泛社会对话的内容和形式的十节课。因为出于对当代和后代的关心,非常谨慎地、共同地进行这一对话至关重要。自2019年10月起,全国各地的所有人都可以参加会议。
我们,空中机动司令部 (AMC),希望您的旅途尽可能舒适愉快。以下有关当地的信息可为您提供帮助。如果您在旅途中有任何疑问或问题,请联系我们的任何一位优质乘客服务代表。我们期待现在和将来再次见到您,并希望以下信息能够在您在 JBLM-McChord Field 逗留期间为您提供帮助。如果您有任何其他信息,请随时询问。McChord Field – AMC 航站楼设施开放时间 USO 休息室 0600 -1800 小时(周一至周六)253-982-1100 商务中心(DSN 电话、电脑、传真)0500-2100 每日航站楼服务乘客设施:提供各种小吃/汽水售货机(只收现金),以及 USO 设施。失物招领:联系乘客服务代表。长期停车:可在客运航站楼附近停车。需要停车证,可从乘客服务柜台获取。禁止乘客穿鞋(军用飞机)军用飞机上禁止穿露趾或露跟鞋(例如凉鞋、Zories、Crocs、人字拖、高跟鞋等)。不得穿会妨碍紧急出口或增加受伤几率的鞋。有非明显残疾的乘客有非明显残疾(如听力障碍、哮喘或心脏起搏器)的乘客应在办理登机手续时告知乘客服务人员此残疾。支票兑现/ATM 机 麦科德空军基地的支票兑现地点有:武装部队银行、Harborstone 信用合作社(530 号楼)、士兵/军官俱乐部(需出示俱乐部卡) ATM 机:Harborstone 信用合作社外、武装部队银行外、BX 内、士兵/军官俱乐部内、购物中心侧面以及小卖部内。 地面交通服务 刘易斯·麦科德联合基地 - Go Transit 运营(免费班车)- 周一至周五 7:00 至 19:00 周六和周日 10:00 至 18:00 如需了解最新的 GO Transit 时刻表和地图,请访问 www.golewismcchord.com。如需询问或需要路线规划方面的帮助,请致电交通主管 253 966-3939。班车每 20 分钟一班。刘易斯堡出租车:253-582-3000 ACE 出租车:253-589-1000 KING CAB 出租车(面包车/大型车辆):253-474-8294 从 JBLM –McChord Field 到 SEATAC 的巴士班车服务,途经“KITSAP AIRPORTER”:预订电话 360-876-1737 BUDGET 租车:253-582-5900(AMC 客运大楼投递箱服务) ENTERPRISE 租车:253-582-8240(AMC 客运大楼投递箱服务) 军用出租车(仅限 TDY 和机组人员):253-982-2684 PIERCE TRANSIT SCHEDULE:253-581-8000 McChord Field 住宿班车运营周一至周五 09:00-17:00L,节假日除外。联系电话:253-982-5613
可戴式计算领域的这些最新进展正在彻底改变我们与技术互动的方式,并扩大智能系统无缝集成到我们日常生活中的潜力。苹果于 2016 年推出了首款获得商业成功的 TWS 耳机 [ 2 ],并被誉为 TWS 市场的开创者。现在,支持 ANC 的耳机的份额正在飙升 [ 3 ]。ANC 耳机为可戴式计算带来了新的亮点。ANC 耳机在耳罩内放置一个反馈麦克风,以感应用户听到的环境噪音。由于这个麦克风听到的噪音与人听到的噪音相似,因此 ANC 电路可以在将结果信号发送到耳机扬声器之前产生抗噪效果。为了改善降噪效果,ANC 耳机进一步利用耳罩外部的前馈麦克风与反馈麦克风协同工作以扩展 ANC 带宽。反馈和前馈麦克风为许多传感应用开辟了新的机遇。例如,当耳机与人耳紧密密封时,就会产生耦合效应 [10],大大放大耳道中的低频声音。因此,许多可听设备的健康功能可以通过用反馈麦克风被动记录通过耳道传播的身体引起的振动来实现。这一想法在学术界得到了广泛的利用,引发了许多令人兴奋的移动应用,包括心率感应、耳部疾病诊断、呼吸感应、身体活动识别等 [11, 12, 15, 18]。除了上述感知耳戴设备的好处之外,耦合效应是入耳式耳塞可以为音乐播放产生足够的低音响应的根本原因。然而,这种耦合效应是可听设备的致命弱点,它放大了本来就过多的低频声音,例如由于身体运动和风引起的声音,使自己的讲话听起来不自然。当 ANC 电路拾取环境中放大的低频噪声时,这种低频噪声会使麦克风饱和,显著降低目标信号的动态范围,产生可听见的伪影,并使 ANC 电路变得不稳定。不幸的是,低频噪声会损害 ANC 性能,影响音频质量,甚至使 ANC 耳塞产生高音调的啸叫噪声。在本文中,我们将描述 ANC 耳机中常用的解决此问题的解决方案如何影响使用 ANC 麦克风子系统的可听式传感系统。需要指出的是,行业中用于调解这些影响以优化 ANC 性能、透明模式性能和语音拾取的解决方案可能会对社区提出的许多算法产生负面影响。过去,这些算法从未向可听式计算社区透露过。此外,经常被耳塞社区忽视,
人工智能 (AI) 系统正在成为我们日常生活中不可或缺的一部分。它们不仅用于做出日常决策,例如健康食品选择和着装推荐,还用于做出重要且有影响力的决策,例如疾病诊断、检测金融欺诈和选拔新员工。它们在自动驾驶、自动金融贷款审批和癌症治疗建议等新兴应用中的部署日益广泛,这让许多人担心当今与 AI 相关的信任程度。这种担忧是真实的,因为在当前快速发展的 AI 系统中,对抗性攻击、偏见和缺乏可解释性已经暴露出现代 AI 系统的许多弱点。因此,构建“可信赖的 AI”系统的机制和方法非常重要。构建可信赖的 AI 系统需要了解模型是否有偏见。偏见一直是现代 AI 系统的一个关键致命弱点。从人脸识别到语言翻译,许多应用都显示出系统存在高度偏见,不同组和测试集之间的性能不一致就是明证。这对此类系统的公平性和可问责性有着重大影响,具有极其重大的社会影响。可解释性和可解释性是此类系统在许多不同情况下的必要条件,例如执法和医疗,在这些情况下,黑箱决策是不可接受的。尽管现代人工智能系统报告的准确度很高,但它们无法向人类解释其决策过程以及失败或成功案例的原因。除了高精度之外,隐私和安全对于人工智能的成功也至关重要。最近的研究表明,人工智能算法可以利用从社交媒体中提取的信息来对模糊的人脸进行去匿名化,并通过监控摄像头促进不必要的监视。此类人工智能应用既带来了挑战,也带来了机遇:虽然监控系统增强了个人和整个社会的安全,但它们易受攻击和破坏,也为滥用提供了机会。对抗性攻击尤其给用户带来了巨大的负面印象,认为人工智能系统很容易被欺骗。作为研究人员,我们需要建立和推广一个严格的框架来阐述对抗性机器学习中的问题,评估各种对抗性攻击下的影响和后果,并描述确保人工智能模型安全的属性。正如在许多领域所观察到的那样,开放性有助于释放更大的潜力。许多人工智能系统不披露模型的谱系、训练数据和性能细节。需要进行更多研究来解决系统披露的共同最低可接受做法。数据和模型归属是信任人工智能系统的关键组成部分。准确描述训练数据、架构和可靠的测试条件对于保证在预定义范围内的性能水平、设定用户期望以及潜在解释潜在偏差和故障至关重要。此外,特别是在由多个组件组成的复杂 AI 系统中,从一个特定模型中归因于给定的预测或信号对于可解释性和安全性至关重要。能够可靠地识别 AI 的签名
'_ '~海上(码头)船舶故障,脆性断裂的概率成为焦点。与船舶故障相关的数据具有很好的相关性,因此,从激发这些研究的研究中可以学到很多东西。非船舶故障数据不存在类似的相关性,因此进行此项调查是为了补充船舶故障的研究。总共研究了 64 个结构故障以及天然气输送管道故障。这些故障发生在铆钉和焊接结构中,例如油箱桥梁、压力容器、烟囱、PM 库存、电力铲子,以及 M 天然气输送管线。结果表明,脆性破坏的历史至少可以追溯到 1879 年。结论是:(1)非船舶结构中的脆性破坏与船舶中的脆性破坏是相同的现象;(2)多种类型的船舶结构都会发生脆性破坏;(3)脆性断裂可以穿过铆钉接头;(4)没有证据表明随着焊接的出现,脆性破坏的发生率是降低还是增加;(5)与其他因素一起,热应力可能很重要;(6)残余应力不是脆性破坏的主要因素,但这种应力与其他因素一起,会引发表面破坏;(7)冶金变量的影响很重要; (S) 冷成型可提高脆性破坏的敏感性,但由于数据缺乏,其作用无法评估;(9) 在有数据的情况下,板的冲击强度一般低于破坏温度;(10) 在大多数情况下,非船舶脆性破坏的断裂起源于纤维制造缺陷,少数断裂起源于设计缺陷;(11) 似乎在所有情况下,断裂都起源于几何连续面; (12) 没有证据表明这些失效结构能显示各种焊接工艺对脆性断裂敏感性的影响;(13) 除焊接质量特别差的情况外,焊接焊缝没有断裂的趋势;(14) 绝大多数非船舶脆性断裂似乎发生在完全静态的条件下;(1.5) 结构的 AGC 似乎与脆性断裂无关;(10) 大多数工程规范允许使用已知特别容易发生脆性断裂的钢材。同时,除一个规范外,所有规范都将应力水平保持在极保守的值;(17) 最后,证明了脆性断裂是多种因素共同作用的结果。船。我没有任何一种易加工的材料能够完全防止其断裂,而且目前也没有已知的试验能够根据小试样的行为准确预测给定钢材在可能发生结构脆性破坏的情况下的性能,因此,精心的设计、材料的选择和良好的工艺对于防止结构脆性破坏至关重要。
现在,我们可以想象一个未来,世界上有残疾人生活的十亿人中有许多人可以在不损害的情况下度过自己的日常生活,这要归功于可穿戴的机器人[1]。这些设备,包括外骨骼和假肢,有可能革新我们协助个人受损的方式。对于上限,可穿戴设备可以在操纵任务中提供抓地力并掌握稳定性,对于下limb,它们可以改善步态模式并减少能量消耗。这些系统的发展激增,最初的工作主要集中在机械设计,人体的界面以及感知用户的四肢上。这产生了有效的系统,以帮助水平地形上的基本抓地任务和运动[2]。扩展到更复杂的任务和更高级别的援助需要推断用户的意图。例如,辅助手套需要知道用户要掌握特定对象以执行特定的任务,然后将掌握类型和手指跨度调整为该对象和任务。对于腿部外骨骼或假肢,该系统需要检测到用户计划上台或穿越湿的人行道,因此可以调整联合扭矩以最大程度地提高援助和稳定性。目前,最流行的下LIMB用户意图的方法是基于用户的运动学信息的惯性传感器。例如,可以使用脚上的惯性测量单元估算脚跟罢工。推断用户意图的另一种方法是利用神经肌肉界面,例如肌电图(EMG)。基于先前步态周期的控制策略可以通过假设用户打算采用类似的运动模式来预测当前的步态周期。这种方法可以测量肌肉电信号来推断运动激活。例如,可以使用从身体部位到肢体截肢的EMG信号来推断缺失的肢体的故意作用以控制活跃的上LIMB假体。基于这些生物学信号的接口和用户的行为提供了对用户内部状态的估计,但是可以解码的信息量仅限于简单的推论,例如通过关节角度传感检测步行速度的变化或用EMG脉冲触发假肢闭合[3]。这将可穿戴设备限制在少量任务中,并且用户通常将控制被认为是复杂而不自然的[4]。这是较高的上限上限假体遗弃率相对较大的原因之一。要扩大任务范围和援助质量,可穿戴机器人必须使用有关发生运动动作的上下文的信息。例如,通过广泛的机器学习,腿部肌肉上的EMG传感器可以检测与水平运动和上升楼梯之间过渡相关的肌肉活动的变化。专门基于EMG,过渡过程中的分类误差比稳态期间的分类误差高四倍[5]。另一方面,上下文的知识(楼梯的位置和步行方向)将允许前方的几个步骤和更高的准确性。计算机视觉可以在获取有关环境和任务上下文的信息中发挥核心作用。视觉提供了有关用户及其周围环境的丰富,直接和可解释的信息,如人类的视觉能力所证明。最近基于视力的人类姿势估计和行动分类技术可以提供有关人类行为的广泛信息[6]。驾驶员和行人意图预测可能是基准的一个很好的例子。感应周围环境是一个充分探索的机器人问题,可以通过对象/场景识别以及同时定位和映射等技术来实现[7]。将视觉行为与上下文信息合并以推断人们的意图仍处于最早的阶段[8],并提出了未解决的挑战。一种通用方法可以使用包括
1. 以直立但放松的姿势舒适地坐在沙发上。现在闭上眼睛或保持柔和的目光。让您的身心开始适应练习,注意您的身体感觉。 2. 将注意力集中在您的脚上。注意脚接触地板的所有部位。注意您的脚趾;脚趾与脚连接的地方;脚中部;脚后跟;脚踝;整个脚底 - 内侧和外侧。 3. 让您的脚沉入地板,注意大地的支撑并感觉它将您踩在地上。 4. 开始注意身体接触沙发的所有部位 - 大腿后侧、座位、背部、手臂和手。让您的手和脚沉入沙发和地板的支撑中。注意您坐着时身体被沙发和地板支撑的感觉。 5. 开始注意您的呼吸。只需轻松呼吸几次,注意吸气和呼气时呼吸的去向。注意吸气和呼气之间的停顿。如果你的思绪飘忽不定——很有可能——只需注意它去了哪里,然后慢慢地、轻轻地将注意力拉回到你的呼吸上。继续这样做,同时你开始注意到鼻子、胸部和腹部的呼吸。6. 慢慢地,将注意力集中在进入鼻孔的呼吸上。注意它是热的还是冷的,轻的还是重的,慢的还是快的。感觉如何?注意吸气和呼气时呼吸接触鼻孔的位置。继续注意鼻孔中的呼吸几分钟。7. 开始注意胸部的呼吸。注意你的胸部如何随着每次呼吸像波浪一样上下移动,吸气时向上移动,呼气时向下移动。注意你的胸部随着每次呼吸而扩张和收缩。观察你吸气和呼气时胸部有节奏的波浪。继续观察你的胸部几分钟。 8. 将注意力转向腹部。将手放在腹部,帮助你与肚脐下方的区域建立联系。这个部位是你身体的核心和中心。注意你吸气和呼气时腹部是如何运动的。如果你走神了,请温和地将它带回到腹部。当你观察腹部的呼吸时,注意你的呼吸是变化还是保持不变。注意腹部呼吸的节奏。 9. 当你注意到腹部的呼吸时,开始将注意力向外扩展到你的整个身体。开始将你的整个呼吸视为一个整体 - 以缓慢、稳定的气流吸气和呼气。注意呼吸的波浪在你的身体中进出 - 用净化的空气填满你的鼻子、喉咙后部、胸部、胸腔、腹部和整个身体。注意你的呼吸如何在你的身体中流动,看看它是否似乎在它接触的区域打开了任何空间。只需注意整个身体呼吸的节奏即可:首先是吸气,然后是呼吸之间的停顿,最后是呼气。吸气和呼气…… 10. 慢慢地,开始将注意力转移到沙发上,转移到你的手和脚上,慢慢睁开眼睛,开始注意你周围的房间。慢慢来,注意你现在的身体感觉。与你开始练习时有什么不同吗?
1. Woyach JA, Johnson AJ。慢性淋巴细胞白血病的靶向治疗:耐药机制和管理策略。Blood。2015;126(4):471-477。https://doi.org/10.1182/blood-2015-03-585075 2. Nakhoda S, Vistarop A, Wang YL。慢性淋巴细胞白血病和非霍奇金淋巴瘤对布鲁顿酪氨酸激酶抑制的耐药性。Br J Haematol。2023;200(2):137-149。https://doi.org/10.1111/bjh.18418 3. Stephens DM, Byrd JC。对布鲁顿酪氨酸激酶抑制剂的耐药性:淋巴系统恶性肿瘤成功故事中的致命弱点。 Blood 。 2021;138(13):1099-1109。https://doi.org/10.1182/ blood.2020006783 4. Wang Q、Pechersky Y、Sagawa S、Pan AC、Shaw DE。布鲁顿酪氨酸激酶在细胞膜上活化的结构机制。美国国家科学院院刊。2016;116(19):9390-9399。https://doi. org/10.1073/pnas.1819301116 5. Lee HJ、Gallardo M、Ma H 等人。Eμ-TCL1 小鼠模型中 p53 独立的伊布替尼反应证明其对高危 CLL 有效。Blood Cancer J。2016;6(6):e434。 https://doi.org/10.1038/bcj。2016.41 6. Honigberg LA、Smith AM、Sirisawad M 等人。Bruton 酪氨酸激酶抑制剂 PCI‐32765 可阻断 B 细胞活化,对自身免疫性疾病和 B 细胞恶性肿瘤模型有效。美国国家科学院院刊。2010;107(29):13075‐13080。https://doi.org/10.1073/ pnas.1004594107 7. Chang BY、Francesco M、De Rooij MFM 等人。使用 Bruton 酪氨酸激酶抑制剂依鲁替尼治疗套细胞淋巴瘤患者后,CD19+CD5+细胞进入外周血。血液。 2013;122(14):2412-2424。https://doi.org/10. 1182/blood-2013-02-482125 8. Ponader S, Chen S.-S, Buggy JJ 等。Bruton 酪氨酸激酶抑制剂 PCI-32765 在体内和体外抑制慢性淋巴细胞白血病细胞存活和组织归巢。血液。2012;119(5):1182-1189。https://doi.org/10.1182/blood-2011-10-386417 9. Xiao L, Salem J.-E, Clauss S 等。伊布替尼介导的心房颤动归因于对 C 端 src 激酶的抑制。循环。2 0 2 0;1 4 2(2 5):2 4 4 3‐2 4 5 5。https://doi。org/1 0。1 1 6 1/CIRCULATIONAHA.120.049210 10. Singer S、Tan SY、Dewan AK 等人。伊布替尼引起的皮疹类似于表皮生长因子受体抑制剂引起的皮肤不良事件。美国皮肤病学杂志。2023;88(6):1271-1281。https://doi.org/10.1016/j.jaad.2019.12.031 11. Lipsky A、Lamanna N。布鲁顿酪氨酸激酶抑制剂的毒性管理。血液学。 2020;2020(1):336‐345。 https://doi.org/10。 1182/hematology.2020000118 12. Herman SEM、Montraveta A、Niemann CU 等人。布鲁顿酪氨酸激酶 (BTK) 抑制剂 acalabrutinib 在两种慢性淋巴细胞白血病小鼠模型中表现出强大的靶向作用和功效。临床癌症研究中心。 2017;23(11):2831-2841。 https://doi.org/10.1158/1078-0432.CCR-16-0463 13. Awan FT、Schuh A、Brown JR 等人。Acalabrutinib 单药治疗对伊布替尼不耐受的慢性淋巴细胞白血病患者。Blood Adv。2019;3(9):1553-1562。https://doi.org/10.1182/ bloodadvances.2018030007
