背景:了解复杂的心脏解剖结构对于经皮左心房附属(LAA)闭合至关重要。传统的多切片计算机断层扫描(MSCT)和经食管超声心动图(TEE)现在得到了高级3D打印和虚拟现实(VR)技术的支持,用于体积数据集的三维可视化。这项研究旨在研究其对LAA关闭程序的附加值。方法:使用MSCT和TEE评估了计划进行介入LAA闭合的十名患者。根据MSCT数据制造了患者特异性3D打印和VR模型。随后,十位心脏病学家以相对评估的LAA解剖结构及其与所有四种成像方式相关的围绕结构相关的程序,并将其程序实用程序评为5点李克特量表问卷(从1 =非常同意5 =强烈不同意)。结果:设备尺寸在MSCT中的额定值最高(MSCT:1.9±0.8; TEE:2.6±0.9; 3D打印:2.5±1.0; VR:2.5±1.1; P <0.01);与MSCT相比,Tee,VR和3D打印在窝卵形的可视化中表现出色(MSCT:3.3±1.4; TEE:2.2±1.3; 3D打印:2.2±1.4; VR:VR:1.9±1.3; All P <0.01)。VR和3D打印技术的主要强度是高度的深度感知(VR:1.6±0.5; 3D打印:1.8±0.4; Tee:2.9±0.7; MSCT:2.6±0.8; P <0.01)。在TEE上的可视化外膜外结构的额定值少于MSCT(TEE:2.6±0.9; MSCT:1.9±0.8,p <0.01)。然而,在本研究中,3D打印和VR无法很好地可视化。这可能有助于更好地理解解剖结构。结论:VR或3D打印中的真实3D可视化在评估LAA的额外值中为经皮关闭计划。尤其是,对深度的优势感知被视为3D可视化的强度。需要临床研究来评估使用使用VR的患者特异性解剖结构的高级多模式成像是否可以转化为改进的程序结果。
摘要 职场平等意味着,在组织中,不同性别的人拥有相同的资源和晋升机会。这意味着,扮演相同角色、长相相似的员工将获得相同的报酬。此外,所有员工都应该有晋升和晋升的机会。在平等的组织中,晋升的唯一特征是人们的能力和才能,而不是他们的性别。定量研究方法——内容分析已用于研究研究领域。在审查和评估以及审查和评估根据性别确定的该领域标准的水平上,确定了理论研究领域中确定的指标和指标。根据目前的研究,在工作场所实现性别平等的最佳方法是首先了解哪些领域存在歧视,然后采取行动消除歧视。下一个问题是如何为许多员工创建工作与生活结构。今天的生活条件不允许许多人早上8点上班,下午4点回家。一个人可能从早上 6 点到下午 2 点工作,而另一个人从早上 10 点到下午 6 点和他的朋友工作。组织可以通过创建多样化的工作时间表(例如接待工作或远程办公)来更公平地对待员工。关键词:人工智能、性别平等、经济地理视角。引言毫无疑问,人工智能等新技术具有很大的力量来帮助人们克服弱点和恐惧,以及改善他们的生活。然而,对其负面后果的担忧不容忽视和不去思考。例如,据预测,随着人工智能的进一步扩张,妇女权利将在不久的将来受到各种影响,如侵犯工作权、人工智能开发造成的损害以及员工对人工智能态度的不平衡等,我们将在下面研究其中的一些。对熟练和有能力与智能系统合作的人员的需求不断增加:随着人工智能和相关技术的扩展,对该领域专家人员的需求将会增加,任何因任何原因而没有足够该领域知识的人将没有机会参与市场工作。同时,处理赋权和消除性别差距问题的国际组织的报告显示,女性将在这一领域遭受更多损失。联合国最近的一份报告宣称,在目前的情况下实现性别平等的目标是“不可能的”,并证实世界正在辜负妇女和女孩。本报告强调,世界各国政府用于妇女赋权的预算不足,现有预算分配不公。根据本报告,联合国
引用:Alireza Heidari。LLPS阳性DNA/RNA设计的生成变压器模型。医学和临床病例报告杂志1(7)。https://doi.org/10.61615/jmccr/2024/aug027140810
许多新兴的生物传感应用 [1]、[2] 以及增强现实应用的人机界面 [3] 都依赖于巨磁电阻 (GMR) 传感器,因为它们具有良好的灵敏度和低 1/f 噪声。作为替代方案,隧道磁电阻 (TMR) 传感器由于其更高的磁阻 (MR) 比可以提供比 GMR 传感器更好的灵敏度。然而,如此高的 MR 比对接口电子设备提出了严格的要求,因为它们的基极电阻变化很大。这种变化会导致放大器输入端出现较大的电压偏移,从而减小放大器的动态范围,在最坏的情况下,如果不进行补偿,会导致前端饱和。消除放大器输入直流偏移的一个可能解决方案是使用斩波电容耦合仪表放大器 (CCIA) 与直流伺服环路 (DSL) [4],参见图 1a。然而,这种方法需要在放大器的输入参考电压噪声和 DSL 可以补偿的最大偏移之间进行权衡。更具体地说,可以通过增加 C DSL 来补偿更高的输入偏移,而这又会增加 CCIA 的输入参考电压噪声 [5]。作为一种替代方案,图 1b 显示了使用跨阻放大器 (TIA) 处理产生的电流 [2] 的可能性。在这种方案中,通常需要辅助电阻
在本文中,我们研究了在漏极侧加入 HfO 2 作为电介质并在源极侧加入硅堆栈对双栅极隧道 FET(DG-TFET)电气性能的影响。为此,我们将传统 TFET 结构与其他四种结构进行了比较,这四种结构的栅极电介质材料要么是同质的,要么是异质的,而漏极侧的绝缘体要么是 SiO 2 要么是 HfO 2 。此外,还提出了一种具有硅源堆栈的结构,并将器件的性能系数与其他对应结构进行了比较。我们的模拟结果表明,漏极侧存在 HfO 2 绝缘体会降低双极传导,而异质栅极电介质则会增强驱动电流和跨导。但是,与传统 TFET 相比,HfO 2 会略微降低源极-栅极和漏极-栅极电容。此外,在所研究的 50 nm 沟道长度 TFET 中,硅源极堆栈与异质栅极电介质和漏极侧的 HfO 2 绝缘体的结合,可实现更高的 I ON /I OFF 比、更低的亚阈值斜率 (S) 和更低的双极传导。
摘要 — 肌磁图 (MMG) 是测量人体骨骼肌中由电活动产生的磁信号的方法。然而,目前开发的用于检测如此微小磁场的技术体积庞大、成本高昂,并且需要在温控环境下工作。开发一种小型化、低成本和室温磁传感器为加强这一研究领域提供了一条途径。在此,我们介绍了一种用于室温 MMG 应用的集成隧道磁阻 (TMR) 阵列。TMR 传感器采用低噪声模拟前端电路开发,以在高信噪比下检测未进行和进行平均的 MMG 信号。MMG 是通过使用肌电图 (EMG) 信号作为触发器对信号进行平均来实现的。观察到的幅度为 200 pT 和 30 pT,对应于手紧张和放松的周期,这与基于有限元法 (FEM) 的肌肉模拟一致,该法考虑了从观察点到磁场源的距离的影响。
摘要 — 大脑微运动是导致植入式神经接口失败的主要原因。有两种方法可以有效减少大脑微运动和组织损伤:(i)缩小植入式装置占地面积和(ii)选择柔性材料作为装置基板。为了满足这些要求,在本文中,我们使用 COMSOL Multiphysics 中的有限元法执行了两组建模。首先,我们对不同尺寸的不同材料(从硬材料(例如硅)到非常软的材料(例如 PDMS))的性能进行建模,以找到微探针的最佳尺寸和材料。对于装置尺寸优化,主要自由度是厚度,而最小柄宽度和长度分别取决于记录位置和目标记录点。基于不同基板对具有不同厚度(50 - 200 μm)和固定柄宽度(100 µm)的装置进行建模,我们表明,基于聚酰亚胺的微探针的安全系数为 5 到 15,最大冯·米塞斯应力为 248-770 MPa。此外,模拟表明,厚度为 50 μm 的聚酰亚胺基微探针,其安全系数为 5,应力为 248 MPa,在尺寸和材料方面提供了最佳解决方案。其次,为了分析设备形状因子,我们根据获得的最佳设计对不同的布局进行建模,发现最佳布局的冯·米塞斯应力为 134.123 MPa,用途广泛,适合用作微探针,尤其是用于缓解脑微运动的影响。关键词——脑植入装置、脑微运动、设备建模、小型化、机械灵活性、形状因子。