关键词:BP神经网络,模糊控制,割台高度,多传感器 摘要 本文采用BP神经网络对割台高度进行采集,利用AMEsim对割台高度调节液压系统进行仿真分析,采用模糊PID控制调节割台升降液压缸,稳定割台高度。收获不同作物的试验结果表明,在割台高度自动控制系统下,作物收获的实际高度与设定高度的误差在15 mm以内,收获效果良好,能够满足多作物联合收获机割台高度自动调节的要求。 摘要 为了提高调节的精度,采用 BP 神经网络多传感器融合处理技术采集割台实时高度,通过 AMEsim 软件对割台 高度调节液压系统进行仿真分析,最后采用模糊 PID 控制比例电磁阀调节割台升降液压缸从而稳定割台高度。 通过收获油菜、谷子和水稻的试验结果证明:在割台高度自动控制系统下,作物收获的实际高度与设定高度误
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
跟踪。由于 2-D 雷达提供的绘图数据仅包含距离和方位角信息,由于可观测性问题,无法使用单个传感器估计目标高度,因此需要结合从多个 2-D 雷达获得的信息(距离和方位角)。如果只有两个主雷达检测到飞机,则无法使用多点定位技术在空中交通管制系统中确定其高度。一次监视雷达 (PSR) 仅提供飞机的斜距和方位角测量,因此,空中交通管制 (ATC) 系统通常使用从飞机机载模式 C 应答器获得的高度信息来估计飞机的三维位置和速度。二次监视雷达 (SSR) 通常用于询问模式 C 和其他应答器并获取高度和其他
摘要。适当的田间管理需要高精度、高准确度和高分辨率的植物高度测量方法。研究表明,地面激光扫描 (TLS) 适用于捕获农作物等小物体。本文介绍了用于监测中国水稻田植物高度的多时相 TLS 调查结果。在田间试验和农民常规管理的田地上进行了三次活动。高密度的测量点使我们能够建立分辨率为 1 厘米的作物表面模型,可用于推导植物高度。对于两个地点,TLS 得出的植物高度和手动测量的植物高度之间都具有很强的相关性(R 2 = 0.91),这证实了扫描数据的准确性。根据田间试验的植物高度和生物量样本之间的相关性建立了生物量回归模型(R 2 = 0.86)。模拟值和测量值之间的强相关性(R 2 = 0.90)支持了对农民田地的可转移性。独立的生物量测量用于验证时间可转移性。该研究证明了 TLS 在推导植物高度方面的优势,可用于模拟生物量。因此,激光扫描方法是精准农业的一种很有前途的工具。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证出版。
Schottky接触是半导体和金属之间关键的界面,在纳米 - 症状导向器件中变得越来越重要。shottky屏障,也称为能量障碍,可以控制跨金属 - 高症导体界面的耗竭宽度和载体运输。控制或调整Schottky屏障高度(SBH)一直是任何半导体设备成功运营中的至关重要问题。本综述提供了SBH静态和动态调整方法的全面概述,特别关注纳米半导体设备的最新进步。这些方法涵盖了金属,界面间隙状态,表面修饰,较低图像的效果,外部电场,光照明和压电效应的工作函数。我们还讨论了克服界面间隙状态引起的费米级固定效应的策略,包括范德华触点和1D边缘金属触点。最后,这篇评论以这一领域的未来观点结束。2024科学中国出版社。由Elsevier B.V.和Science China Press出版。保留所有权利。
由于主要用于生成点间距为几米的数字地形模型,机载激光扫描仪数据的精度通常仅指定为高度精度。然而,数据采集系统的最新发展导致机载激光扫描仪数据的点密度大幅增加。与此同时,该技术越来越多地用于从高密度点数据生成 3D GIS 信息的新应用领域。在这些基于高密度数据集的应用中,数据点的高度和平面精度同等重要。对激光扫描仪系统组件的分析以及实际测试表明,机载激光扫描仪数据的高度精度通常明显优于平面精度。虽然单个地面点的高度精度通常在 10-15 厘米的量级,但可以说平面测量精度与地面飞行高度几乎呈线性关系,在飞行高度为 1000 米时,典型精度在 0.5-1.0 米的量级。高度和平面测量精度都受到显著的系统效应的影响,这些效应通常大于随机误差。
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
由于主要用于生成点间距为几米的数字地形模型,机载激光扫描仪数据的精度通常仅指定为高度精度。然而,数据采集系统的最新发展导致机载激光扫描仪数据的点密度大幅增加。与此同时,该技术越来越多地用于从高密度点数据生成 3D GIS 信息的新应用领域。在这些基于高密度数据集的应用中,数据点的高度和平面精度同等重要。对激光扫描仪系统组件的分析以及实际测试表明,机载激光扫描仪数据的高度精度通常明显优于平面精度。虽然单个地面点的高度精度通常在 10-15 厘米的量级,但可以说平面测量精度与地面飞行高度几乎呈线性依赖关系,在飞行高度为 1000 米时,典型精度在 0.5-1.0 米的量级。高度和平面测量精度都受到显著的系统效应的影响,这些效应通常大于随机误差。
1.1.用极坐标在球体上定义的球冠(虚线圆)(ρ 是相当于 ψ 的径向距离(弦长))............................................................................. 2 1.2.显示计算重力势能数的方案的流程图............................................................. 11 1.3.空中自由空气重力扰动(mgal)插值到规则的二维水平坐标网格上,但飞行高度不规则............................................................. 16 1.4.埃塞俄比亚航空重力测量的测量点分布。重力扰动(mgal)............................................................................................. 17 2.1.质量线元素的几何形状及其相对于半径矢量 R 的重力吸引力。............................................................................................................. 39 2.2.垂直线质量元素相对于质量元素法向重力方向的垂直和水平重力分量 ...................................................................................................................... 41 2.3.通过点质量的垂直阵列近似垂直线质量元素 ...................................................................................................................................... 44 2.4.用于近似垂直棱柱的圆柱扇区的几何形状.................................................................................................... 47 2.5.将垂直线质量元素和多点的重力和潜在模型的精度与从圆柱扇区导出的相应模型进行比较,作为水平距离的函数。(a) 重力差异(mGal)。(b) 重力差异(mgal)。(b) 电位差 ) ( 2 2 − s m ......................................................... 52 2.6a-c.在源质量附近计算的垂直线质量元素、多点和扇区的重力和重力势能比较 – 在可变海拔和恒定水平距离 90 m。 (a) 重力 (mgal)。(c) 电位差 ) ( 2 2 − s m ......................... 54 2.7a-b.由于测试质量对较长距离重力和电位的影响,比较垂直线质量元素相对于多点的精度。(a) 重力差异 (b) 电位差异。........................ 56 2.8.计算地形质量对重力和电位影响所需的垂直线质量元素、多点和扇区的计算速度比较势。百分比与多点计算速度有关。................................................................................................................................... 58 2.9a-b。从代表埃塞俄比亚及其周边地区的 SRTM 数据中评估航空重力测量点的现场地形重力和势,使用多点表示半径 1 公里内的内区,使用刺猬表示半径更大的区域。(a) 重力(mgal)。(b) 势 ) ( 2 2 − s m ............. 59 2.10。消除地形引力影响后,从航空重力扰动得出的埃塞俄比亚布格扰动图(mgal)........... 60 2.11。根据代表埃塞俄比亚及其周边地区的 SRTM 数据的航空重力观测计算得出的压缩地形重力模型(截至 2159 年 = n 的系列完整数据)............................................................. 64
近年来,用于采矿业 3D 地形测绘的轻型无人机 (UAV) 得到了显著发展。特别是在露天矿等复杂地形中,海拔起伏剧烈,与传统方法相比,基于无人机的测绘已证明具有经济性和更高的安全性。然而,无人机测绘复杂地形的最重要因素之一是飞行高度,由于生成的 DEM 的安全性和准确性,需要认真考虑飞行高度。本文旨在评估飞行高度对露天矿生成的 DEM 准确性的影响。为此,研究区域选在越南北部一个地形复杂的采石场。调查采用 50 m、100 m、150 m、200 m 和 250 m 五个飞行高度进行。为了评估生成的 DEM 的精度,使用了 10 个地面控制点 (GCP) 和 385 个检查点,这些检查点通过 GNSS/RTK 和全站仪方法进行了测量。通过 X、Y、Z、XY 和 XYZ 分量的均方根误差 (RMSE) 来评估 DEM 的精度。结果表明,在飞行高度小于 150 m 时生成的 DEM 模型具有较高的精度。当飞行高度从 50 m 增加到 250 m 时,10 个 GCP 的垂直 (Z) 方向的 RMSE 从 1.8 cm 增加到 6.2 cm,水平 (XY) 方向的 RMSE 从 2.6 cm 增加到 6.3 cm,而 385 个检查点的垂直 (Z) 方向的 RMSE 从 0.05 m 逐渐增加到 0.15 m。