尚未实现驱虫治疗的靶向分娩,从而导致过量药物和治疗疗法的副作用。为此,使用脂质摄入作为食物来源的脂质制成了载有药物的生物相容性纳米颗粒。该制剂显示出优秀的药物(阿苯顿唑)载荷效率为83.3±6.5 mg/g,具有持续释放性能,并且在24小时内显示了86.4±3.9%的药物释放。此外,在用Haemonchus contortus摄入若丹明B负载颗粒后,在消化道中观察到染料的时间依赖性释放,然后在整个蠕虫中分布。由颗粒显示出高达50倍的阿苯达唑效力的颗粒显示肠道持续释放特性。因此,这种配方具有巨大的潜力作为驱虫药物递送车,不仅可以减少剂量,而且还可以通过增强药物的生物利用度来减少药物诱发的副作用。
实验室:学生将通过完成与:1。显微镜2。细菌的染色3。无菌技术4。细菌隔离技术5。控制的物理和化学方法6。免疫学7。环境中的微生物8。手工擦洗的有效性9。呼吸道的细菌10。胃肠道的细菌11。鉴定未知细菌12。研究选定真菌的研究13。研究选定的寄生原生动物和蠕虫14。分子诊断D.课程学习成果:成功完成课程后,学生将能够:1。定义微生物学的基本原理。(目标3A)2。展示了对微生物学基本原理的理解(目标3A)3。在实验室环境中提出和检验假设。(目标2a,2b,2c,2d,3b)4。评估实验结果并在口服和
弓首蛔属蠕虫是蛔科的线虫。弓首蛔属已知有 27 种,其中三种具有人畜共患潜力:犬弓首蛔、猫弓首蛔和翼足弓首蛔,其常见宿主分别是狗、猫和蝙蝠,成虫藏于肠道中。然而,许多脊椎动物物种可以充当转续宿主(灵长类动物、啮齿动物、猪、鸟类),蠕虫的第三阶段幼虫可以在其中存活很长时间,迁移或在组织中成囊(Strube 等人,2013 年;Ziegler 和 Macpherson,2019 年)。 Holland & Hamilton (2013) 指出,人们对野生动物作为弓首蛔虫保续宿主的重要性知之甚少,很少有关于它们在自然条件下出现的报道 (Dubinský et al., 1995)。尽管如此,许多啮齿动物、兔子和其他哺乳动物、鸟类,甚至蚯蚓都被确定为潜在的保续宿主。人类在感染弓首蛔虫时,也会充当保续宿主。
家蝇(Musca domestica L.,双翅目:家蝇科)是全球最常见的蝇类之一,在传播对兽医和医学都很重要感染和病原体方面发挥着重要作用。这包括传播肠道蠕虫卵以及体外寄生虫、体内寄生虫和原生动物囊肿。防治害虫的方法包括生物、物理、化学和农业技术方法。化学方法仍然是控制害虫种群的主要策略;然而,过度使用、增加剂量和治疗频率导致了抗药性的产生。迄今为止,已在自然种群中记录了大量对杀虫剂产生抗药性的记录。抗药性产生的一个重要机制是细胞色素系统的酶对外来化合物的解毒。本研究旨在总结目前关于 P450 单加氧酶在产生家蝇杀虫剂抗药性方面的作用的知识。本综述重点介绍了家蝇中导致对最常见杀虫剂产生抗性的细胞色素 P450 单加氧酶的多样性及其在基因组中的位置。在这项研究中,我们识别并描述了与杀虫剂抗性相关的主要 P450 候选基因。作者还总结并系统化了该领域的最新研究成果。
S. R. Mane,S。K。Bais,V。B。Dongre Fabtech药学学院,桑戈拉,索拉普尔,马哈拉施特拉邦,印度马哈拉施特拉邦摘要:微生物学是对微生物生物实体的研究,太小了,无法与无助的眼睛见面。 微生物学的大部分主要进步发生在过去的150年内,并且在这段时间里已经发展了几个重要的微生物学子学科,包括微生物生态学,分子生物学,免疫学,工业微生物学和生物技术。 各种类型的微生物都存在于生命的所有三个领域(细菌,古细菌和真核生物)中,它们是迄今为止地球上最丰富的生命形式。 微观生物学剂包括细菌,古细菌,原生动物(原生动物和藻类),真菌,寄生虫(蠕虫)和病毒。 尽管一小部分微生物对某些动植物有害,并且可能在人类中引起严重疾病,但绝大多数微生物提供了有益的服务,例如协助水纯化和某些食物的产生,许多微生物对于地球生态系统的正常功能至关重要。 分子生物学彻底改变了我们对海洋微生物的多样性,功能和社区结构的理解。 越来越多地,从生物医学诊断和研究行业得出的工具和技术与传感器同时使用,这些传感器是海水的物理,化学和光学特性的传感器。 关键字:微生物学S. R. Mane,S。K。Bais,V。B。Dongre Fabtech药学学院,桑戈拉,索拉普尔,马哈拉施特拉邦,印度马哈拉施特拉邦摘要:微生物学是对微生物生物实体的研究,太小了,无法与无助的眼睛见面。微生物学的大部分主要进步发生在过去的150年内,并且在这段时间里已经发展了几个重要的微生物学子学科,包括微生物生态学,分子生物学,免疫学,工业微生物学和生物技术。各种类型的微生物都存在于生命的所有三个领域(细菌,古细菌和真核生物)中,它们是迄今为止地球上最丰富的生命形式。微观生物学剂包括细菌,古细菌,原生动物(原生动物和藻类),真菌,寄生虫(蠕虫)和病毒。尽管一小部分微生物对某些动植物有害,并且可能在人类中引起严重疾病,但绝大多数微生物提供了有益的服务,例如协助水纯化和某些食物的产生,许多微生物对于地球生态系统的正常功能至关重要。分子生物学彻底改变了我们对海洋微生物的多样性,功能和社区结构的理解。越来越多地,从生物医学诊断和研究行业得出的工具和技术与传感器同时使用,这些传感器是海水的物理,化学和光学特性的传感器。关键字:微生物学
粘液菌四链硫酸毛乳子是一种广泛扩散的内寄生虫,在鲑鱼鱼中引起寿命肾脏疾病(PKD)。我们开发了一条在硅管道中,以将苔藓味的苔藓植物的转录物与天然脊椎动物宿主的肾脏组织分开,布朗鳟鱼(Salmo trutta)。严格的过滤后,我们构建了一个部分转录组组件T. Bryosalmonae,包含3427个转录本。基于对组装寄生虫转录组和大西洋鲑鱼(Salmo Salar)蛋白质组的同源限制搜索,我们确定了四个蛋白质靶标(内糖糖果酰胺酶,豆科蛋白酶,碳酸性赤铁酶2,胰腺性性硬脂酶2,胰腺脂肪酶相关蛋白2),抗脂肪酶相关的药物2)抗肿瘤。这些蛋白质在寄生虫生物和蠕虫中的早期工作表明,所鉴定的抗寄生虫靶标也代表了针对苔藓乳豆乳杆菌的有前途的化学治疗候选,并加强了已知抑制剂可以在进化较远的生物中有效的观点。此外,我们在中度和严重感染的鱼之间鉴定了差异表达的苔藓乳绿os子基因,这表明寄生虫负荷低的鱼类中苔藓乳豆乳杆菌的孢子虫阶段增加了。总而言之,这项研究为在T. bryosalmonae中的未来基因组研究铺平了道路,并代表了开发针对PKD有效药物的重要一步。
根据WHO分类标准,NTD是疾病,疾病或疾病,(1)(1)对贫困和边缘化的人群不成比例,导致重要的疾病和死亡率,因此证明了全球反应; (2)主要影响生活在热带和亚热带地区的社区,尤其是远离医疗保健环境的社区; (3)可以通过公共卫生干预措施预防和控制; (4)与健康问题的程度相比,科学研究和公共/私人资金相对忽略了[1]。Based on the above criteria, WHO currently focuses on a diverse group of 20 diseases and dis- ease groups, mainly infectious, caused by (lyssa- and arbo-)virus, bacteria, fungi, parasites (proto- zoa and helminths), and toxins (snake bite envenoming, noncommunicable disease), all of global public health importance ( Box 1 ).此优先级清单并未考虑到全世界造成健康,社会和经济负担的所有被忽视的临床状况。例如,PLO被忽视的热带疾病已大大扩展了此列表,包括具有与核心NTDS组相当的慢性和/或使人衰弱特征的其他疾病或状况[2]。否则分类,绝大多数NTD在非洲,美国,亚洲和大洋洲的热带和热带地区都普遍存在。但是,其中一些在历史上超越了这些边界。例如,利什曼病,囊性棘球菌病和肺泡棘突病在欧洲历史上是流行的[3,4]。这种情况是某些与贫困相关的原生动物和观察到的NTD在核心流行区域中存在的复发可以归因于全球社会和气候变化。诸如人类移民,国际旅行,动物运动和贸易,粮食贸易,经济低迷和气候变化等事件可能会扩大导致NTD,其哺乳动物宿主,传播季节以及vectors的能力的病原体存在的领域。
对结核病(TB)的防护性免疫需要对TNF和IFN-γ等细胞因子的TH-1反应,该反应在免疫细胞的募集和激活中起着关键作用。蠕虫感染可能导致调节性T细胞的诱导,而Th-2偏斜的反应降低了T细胞中IFN-γ的降低。TH-1反应的降低可以有利于潜在结核感染(LTBI)的重新激活,尽管尚未对活性肺结核(PTB)患者的IFN-γ + CD4 + T细胞的蠕虫特异性影响以及与TB疾病严重程度的联系。因此,使用健康对照组,LTBI个体和PTB患者的血细胞(PBMC)评估不同蠕虫对IFN-γ + CD4 + T细胞在Gondar ethio-PIA中的影响。健康控制中的Ascaris lumbricoides,Mansoni和钩虫感染也同样有助于降低IFN-γ + CD4 + T细胞的频率,而在LTBI和PTB患者中s s s n s s n s n s s s s n s s s s s s cocaris。Mansoni共感染对降低T细胞的IFN-γ产生能力的影响最大。仅在蠕虫共感染的PTB患者中,TB细胞的IFN-γ产生能力与TB疾病的严重程度的增加相关,而在两个月的随访中,抗抑郁治疗恢复了T细胞的IFNγ产生能力。
摘要:近年来,越来越多地探索了构成宿主体内微生物和宿主体内微生物社区之间关系的性质。微生物,包括细菌,古细菌,病毒,寄生虫和真菌,经常与宿主共同发展。在人类中,微生物群的结构和多样性根据宿主的免疫力,饮食,环境,年龄,生理和代谢状况,医学实践(例如抗生素治疗),气候,季节和宿主遗传学而有所不同。最近下一代测序(NGS)技术的出现增强了观察能力,并可以更好地理解微生物群中不同微生物之间的关系。宿主与其微生物群之间的相互作用已成为对公共卫生应用具有治疗和预防兴趣的微生物研究领域。本综述旨在评估原核生物和真核群落之间相互作用的当前知识。在分析了研究中使用的元基因组方法的简要描述后,我们总结了可用出版物的发现,描述了细菌群落与原生动物,蠕虫,蠕虫和真菌之间的相互作用,在实验模型中或在人类中或在人类中。总体而言,我们观察到在某些微生物可以改善宿主的健康状况的情况下,有益的影响存在,而其他微生物的存在与病理学有关,从而导致对人类健康的不利影响。
Stigmatoteuthis Arcturi Robson,1948年,属于家庭组织植物科,1880年至1881年,被称为珠宝鱿鱼,这是濒临灭绝的巨型巨型牛奶中最重要的组成部分之一,例如精子Whales(Clarke,Clarke,2006年)。珠宝的鱿鱼的特征是独特的形态,其皮肤上有许多摄影作品,以破坏其阴影并从深水中欺骗掠食者。他们的体内也具有高水平的不对称性,其眼睛的大小,形态和色素沉着较大,其本身是专门针对不同任务的(Thomas等,2017)。虽然较大的左眼看着从表面发出的昏暗的光线以发现其大型捕食者,但较小的右眼向底部看,寻找其Micronekton猎物的生物发光。s. arcturi是1900年的柱头stigmatoteuthis pfeffer属的三种同种异体物种之一,其特征在于男性生殖系统的重复末端部分,并且它们之间存在细微的形态差异,仅在成熟的男性中才能识别出来(Young&Vecchione,2016年)。它在热带和亚热带大西洋近海水域中分布,与任何其他头足类动物一样,Arcturi S. Arcturi迅速生长,这是由于非常激烈的掠夺性活动所增强。珠宝的鱿鱼是寄生虫的寄生虫的寄生虫宿主,例如Anysakis Dujardin,1845年和其他线虫(Palomba等,2021)。他们将这些寄生虫转移到较高的营养水平的宿主中,例如商业上重要的剑鱼和濒临灭绝的齿鲸,这些寄生虫结束了他们的生命周期。