在2020年,尽管Covid-19-pandemic产生了严重的影响,但Hemen的员工流动率很低(11%),但缺乏确保职业生涯和继任计划的实践影响。根据分析,高性能不一定与晋升机会保持一致。员工访谈表明,员工,特别是医生,需要进行正式培训,指导或赞助计划。在评估期间,男性离开该公司的可能性是女性的两倍。所引用的原因包括更好的薪水和业务发展机会。对于女性,尽管海门提供了一些灵活的工作选择,但主要的挑战是保持工作与生活的平衡。
植物的基因组序列和基因组排列技术的进步已经增加了几乎任何农业特征的繁殖可能性。ZFN(锌核酸盐)和TALEN(转录激活剂效应子核酸酶),使得调节在分子水平上处理的任何基因成为可能。相比之下,CRISPR / CAS9基因组编辑方法包含简单的设计和易于克隆方法。cas9可以在一个以上的基因区域中与针对基因组中多个区域的不同引导(指南)RNA不同。CRISPR-CAS9模块中,使用了几种不同的修改CAS9盒来提高目标特异性并减少非目标分裂。还提供了新的选择来提高基因调节方法的特异性和效率。在这项研究中,植物育种中总结了基于CRISPR/CAS9的基因组编辑技术,并提出了CRISPR/CAS9的研究来提高生物和非生物胁迫耐受性。
于1997年开业,Migros Sanal Market是Türkiye的第一个在线杂货店购物网站。符合其追求多通道增长的策略,此后,该公司一直在增加其在线渠道的数量和功能,符合客户的需求和期望。Migros Sanal Market,Migros Hemen,Migros Ekstra,Macroonline和Tazedirekt品牌在Dijital Platform PlatformGıdaHizmetleriA.ş下合并。(“ Migros One”),Migros的子公司,2021年。Migros的操作进一步扩大了2022年Migros Yemek和2023年的Mion在线渠道。Migros One厨房,为各种Migros厨房品牌提供生产和供应服务,也是在Migros One雨伞下推出的。这些合并也将Mobil变成了一个超级应用程序,该应用程序可无缝访问公司所有在线购物渠道。所有这些渠道也可以直接通过www.migros.com.tr网站访问。Migros的目标是在未来3年内将其在线运营增加三倍。
Adjama Irédon*,1 Dr. Hemen Dave** 摘要:近年来,微塑料的存在已成为一种严重的环境威胁,造成生态风险和人类健康危害。当代研究表明,微塑料在环境中无处不在,包括陆地、水生、空中,甚至生物环境,即生物体内和人体内。因此,检测和分析环境基质中的微塑料是一项决定性任务,这对于预防和去除微塑料污染是必不可少的。然而,微塑料的来源多样,类型多样,需要在各种环境基质中进行检测。因此,要了解环境基质中的微塑料污染水平,微塑料检测和分析的复杂性包括定性和定量检测,然后根据聚合物的类型、大小和形状、结构类型(纤维、碎片、薄膜)等对微塑料进行分类。环境基质中的微塑料污染可以通过显微镜和视觉分类或光谱法进行评估。许多研究人员已经开发出使用显微镜进行视觉检测的方法,这些方法通常易于应用,但需要大量的人工工作时间,并且可能会得出误导性的结果,因为缺乏有关微塑料类型的进一步信息。虽然光谱法是一种适用于大量样本的简单方法,但对微塑料进行分类会进一步复杂化。为了解决这些问题,科学家们求助于人工智能 (AI) 的应用,以便更好地检测和分类过去几十年来从各种生态系统中采集的样本中积累的不同类型的微塑料。将人工智能与微塑料的微观或光谱检测相结合,可以成为微塑料检测的法医工具,以降低与检测和识别相关的复杂性。机器学习或人工神经网络可以成为处理光谱或显微镜获得的图像的强大工具,用于自动快速筛选/分类微塑料。基于人工智能的环境基质微塑料污染检测为大数据处理开辟了新的空间,具有可解释性,可提供可靠的结果和预测。本研究回顾了研究人员利用人工智能检测环境基质中的微塑料的方法,以自动和准确地对环境中的微塑料进行分类。关键词:微塑料、检测、环境基质、人工智能、机器学习、法医工具 I. 简介 塑料材料由多种聚合物以及颜色和其他添加剂制成,可根据应用和用户要求提供所需的特性。经济合作与发展组织 (OECD) 报告称,全球塑料产量已从 234
CRISPR-Cas技术是一种通过修饰内源基因或整合外源基因来编辑生物基因组的基因工程技术。负责原核生物适应性免疫的CRISPR-Cas系统的发现及其转化为基因组编辑工具彻底改变了基因工程领域。在CRISPR-Cas系统中,CRISPR(成簇的规律间隔的短回文重复序列)描述的是一系列被称为“成簇的规律间隔的短回文重复序列”的DNA序列,而Cas(CRISPR相关蛋白)描述的是以CRISPR序列为指导来识别和切割特定DNA链的内切酶。 CRISPR-Cas 技术不同于之前的技术之处在于,它是一种灵敏、高效且低成本的方法,可以轻松应用于几乎任何生物体的基因组。从发现到现在,这项技术已被证明是一种很有前途的工具,可用于医学、生物医药、农业和畜牧业等许多领域。另一方面,CRISPR-Cas技术的广泛应用潜力、易用性和低成本增加了其被用于恶意或不负责任的目的的可能性。该技术的负面使用可能性以及可能的技术故障增加了人们对其在许多领域应用的伦理和道德担忧,特别是生殖系基因组编辑,并将生物安全讨论提上了议事日程。各国关于使用 CRISPR-Cas 和其他基因组编辑技术的政策各不相同,许多国家没有专门针对基因组编辑的法律法规或正在制定中。本综述阐述了CRISPR-Cas技术的基本机制,并给出了其在医学、生物医药、农业和畜牧业等各个领域的应用实例,并强调了潜在的风险和不同国家的法律监管。