消防毛毛虫(Sethotosea asigna,Lepidoptera:limacodidae)是油棕的主要害虫,并导致收获损失。天然敌人,例如Sycanus sp。可以控制消防毛毛虫。Sycanus sp。在实验室中使用替代饲料,Maggot Black Soldier Fly(Hermetia Illucens Linnaeus)观察到。 观察到的变量是鸡蛋,若虫,Imago Stadia和Sycanus sp。的生命周期。 数据计算,以图形和表格显示,并给出描述性分析。 结果表明,掠食性昆虫Sycanus sp。可以通过提供替代饲料(例如黑色士兵飞行(BSF)(Hermetia Illucens)mag脚来壮成长。 基于结果,众所周知,一个女性Sycanus sp。 可以在被喂食BSF magot后产生101个鸡蛋,孵育时间为17天。 若虫期的持续时间约为64.16天,死亡率相对较低(2-12%)。 形态学,Sycanus sp。 增长并发展良好。 身体长度约为身体宽度的两倍。 男性的年龄比女性的年龄较短。 性别比也显示出比女性更少的男性(2:3)。。观察到的变量是鸡蛋,若虫,Imago Stadia和Sycanus sp。的生命周期。数据计算,以图形和表格显示,并给出描述性分析。结果表明,掠食性昆虫Sycanus sp。可以通过提供替代饲料(例如黑色士兵飞行(BSF)(Hermetia Illucens)mag脚来壮成长。基于结果,众所周知,一个女性Sycanus sp。可以在被喂食BSF magot后产生101个鸡蛋,孵育时间为17天。若虫期的持续时间约为64.16天,死亡率相对较低(2-12%)。形态学,Sycanus sp。增长并发展良好。身体长度约为身体宽度的两倍。男性的年龄比女性的年龄较短。性别比也显示出比女性更少的男性(2:3)。
摘要:了解害虫的生物学知识对于制定可持续的管理计划至关重要。蝽科昆虫具有半变态生命周期,包括卵、若虫和成虫生命阶段,这些生命阶段在形态、生态和行为特征上有所不同。其中一些特征,如交配行为、信息素(警报和聚集信息素)和肠道共生体的获得,可以作为害虫管理策略的目标。在这里,我们回顾了有关蝽科昆虫这些生活史特征的现有文献,这些特征可能在管理计划中使用。信息素介导的聚集和共生体获得的中断是蝽科昆虫控制的两个重要目标。其他特征,如使用警报信息素来增强天敌和使用基质振动来干扰交配,值得进一步考虑。尽管色觉和飞行能力对臭虫管理具有潜在重要性,但对其的研究仍然很少。
1 Sert -O(DEAS)的Agroning工程系,联邦Sergipe大学(UFS),Eng。Jorge Neto -KM 03,S/N,我们的Gl O Ria 49680-000的圣母,如果是巴西; nilsononufv@gmail.com 2 Tri-Mineiro科学技术学院农学系(IFTM校园Uberl dnia),Uberl-NDIA 38400-970,MG,巴西MG; Philipe.corcino@gmail.com 3蔬菜生产毕业计划,Jeqeitinhonha联邦大学和Mucuri,JK Campus,Diamantina 39100-000,MG,巴西; gildiano.oliveira@ufvjm.edu.br(g.s.d.o.); edmond.barry@ufvjm.edu.br(E.J.D.V.B.); marcus.alvarenga@ufvjm.edu.br(M.A.S.)4 Agroning Engineering系(DEA),联邦Sergipe大学(UFS),基督教49100-000,SE,巴西; alisson.da-silva-santana@unl.edu(A.D.S.S.S. ); bacci.ufs@gmail.com(L.B.) 5昆虫学和植物病理学劳动,北弗卢米宁州立大学达西·里贝罗(UENF),坎波斯·戈斯塔卡兹斯28013-602,巴西RJ; silva.gersonadriano@gmail.com 6森林科学毕业生计划,Jequitinhonha联邦大学和Mucuri,JK Campus,Diamantina 39100-000,巴西MG; aguiar.fernanda@ufvjm.edu.br 7,UFV校园,UFV校园联邦大学昆虫学系,Viçosa36570-000,巴西毫克; picanco@ufv.br 8蔬菜生产研究生的计划,托坎特斯联邦大学,古鲁皮校园,古鲁皮77402-970,到巴西; rsarmento@mail.uft.edu.br *通信:ricardo.siqueira@ufvjm.edu.br.br4 Agroning Engineering系(DEA),联邦Sergipe大学(UFS),基督教49100-000,SE,巴西; alisson.da-silva-santana@unl.edu(A.D.S.S.S.); bacci.ufs@gmail.com(L.B.)5昆虫学和植物病理学劳动,北弗卢米宁州立大学达西·里贝罗(UENF),坎波斯·戈斯塔卡兹斯28013-602,巴西RJ; silva.gersonadriano@gmail.com 6森林科学毕业生计划,Jequitinhonha联邦大学和Mucuri,JK Campus,Diamantina 39100-000,巴西MG; aguiar.fernanda@ufvjm.edu.br 7,UFV校园,UFV校园联邦大学昆虫学系,Viçosa36570-000,巴西毫克; picanco@ufv.br 8蔬菜生产研究生的计划,托坎特斯联邦大学,古鲁皮校园,古鲁皮77402-970,到巴西; rsarmento@mail.uft.edu.br *通信:ricardo.siqueira@ufvjm.edu.br.br
半翅目昆虫的起源可以追溯到 2.3 亿年前的二叠纪晚期,远早于 1 亿年前的白垩纪开花植物的起源。半翅目昆虫用吸吮式喙进食流质食物;植食性半翅目昆虫的口器(刺)结构精巧,可以从植物木质部或韧皮部中贪婪地吸食食物。这种适应性使一些半翅目昆虫成为全球重要的农业害虫,每年造成严重的农作物损失。由于农业环境中依赖化学杀虫剂控制害虫,许多半翅目害虫已经进化出对杀虫剂的抗药性,因此迫切需要开发新的、针对特定物种的、对环境友好的害虫防治方法。 CRISPR/Cas9 技术在果蝇、赤拟谷盗、家蚕和埃及伊蚊等模型昆虫中的快速发展,引发了双翅目和鳞翅目新一轮的创新基因控制策略,也引发了人们对评估半翅目基因控制技术的兴趣。迄今为止,半翅目的基因控制方法在很大程度上被忽视,因为将遗传物质引入这些昆虫的生殖系存在问题。模型昆虫物种中 CRISPR 介导的诱变频率很高,这表明,如果能够解决半翅目的递送问题,那么半翅目的基因编辑可能很快实现。过去 4 年中,CRISPR/Cas9 编辑已在 9 种半翅目昆虫中取得了重大进展。这里我们回顾了半翅目昆虫的研究进展,并讨论了将当代遗传控制策略扩展到这一对农业具有重要意义的昆虫目物种所面临的挑战和机遇。
Replicate 1 Replicate 2 Replicate 3 EMI maximum Acari 20 20 20 20 Araneae 5 5 5 lsopoda Chilopoda 10 20 20 20 Diplopoda 10 10 Pauropoda 20 20 20 Symphyla 20 20 20 20 Protura 20 20 20 Diplura 20 20 20 20 Collembola 10 20 8 20 Psocoptera 1 1 1 Thysanoptera 1 1 1 Hemiptera 1 1 1 Coleoptera 5 10 20 20鞘翅目(幼虫)
摘要Melaleuca Quinquenervia(Cav。)S.T. Blake(Myrtales:Myrtaceae)是一棵在美国佛罗里达州的入侵树,为此,psyllid,boreioglycaspis melaleucae(Moore)(Hemiptera:Aphalaridae)在2002年4月成功建立以控制其传播。 寄生虫黄蜂,psyllaephagus迁移者McClelland,sp。 nov。被发现是可以在澳大利亚寄生的这种木板,我们认为这是其本地范围,在佛罗里达州,我们认为它是浮雕的。 我们为P.迁移者提供了描述,高分辨率图像和形态诊断,以及五个基因区域的分子数据集,以促进其在系统发育研究中的识别和使用。 寄生虫的生物学以其未成熟阶段的文献呈现。 捕获数据表明,P。迁移者减少了佛罗里达州生物防治剂B. helaleucae的种群。S.T.Blake(Myrtales:Myrtaceae)是一棵在美国佛罗里达州的入侵树,为此,psyllid,boreioglycaspis melaleucae(Moore)(Hemiptera:Aphalaridae)在2002年4月成功建立以控制其传播。寄生虫黄蜂,psyllaephagus迁移者McClelland,sp。nov。被发现是可以在澳大利亚寄生的这种木板,我们认为这是其本地范围,在佛罗里达州,我们认为它是浮雕的。我们为P.迁移者提供了描述,高分辨率图像和形态诊断,以及五个基因区域的分子数据集,以促进其在系统发育研究中的识别和使用。寄生虫的生物学以其未成熟阶段的文献呈现。捕获数据表明,P。迁移者减少了佛罗里达州生物防治剂B. helaleucae的种群。
Bagrada Hilaris(Burmeister)(Hemiptera,Pentatomidae),也称为Bagrada Bug,现在是西半球的重要害虫,已经入侵了西部单位状态(Palumbo等人(Palumbo等) 2016),墨西哥(Sánchez-Peña,2014年)和智利(Faúndez等 2016)。 在智利,B。Hilaris迅速传播到最初被发现的大都会地区的北部和南部(Faúndez等人。Bagrada Hilaris(Burmeister)(Hemiptera,Pentatomidae),也称为Bagrada Bug,现在是西半球的重要害虫,已经入侵了西部单位状态(Palumbo等人(Palumbo等)2016),墨西哥(Sánchez-Peña,2014年)和智利(Faúndez等2016)。在智利,B。Hilaris迅速传播到最初被发现的大都会地区的北部和南部(Faúndez等人。2018),并且与黄铜质作物和自然区域有关(Alaniz等人2021)。智利中的当前控制措施由常规杀虫剂的重复应用组成,这些杀虫剂似乎无效(SAG 2017a,b)。当前,在城市或郊区环境中或自然栖息地中没有可行的选择可以控制人口。目前,智利瓦尔帕莱索的一家研究所Centro Ceres正在通过多样化的农业生态系统的营养成分来调查这种害虫的替代解决方案。通过增加功能性生物多样性和采用推拉策略,目的是降低Hilaris的密度和对农作物的损害,并有利于自然敌人的存在。然而,关于一般来说,针对臭虫的土著罐头剂的知识,尤其是Hilaris的知识在智利方面很差。由于需要饲养设施和共同限制,因此,Hilaris的前哨卵的暴露仅是机会性的,但是我们研究B. Hilaris的努力偶然地提供了我们在这里提出的实质性结果。
昆虫的先天免疫系统细分为细胞防御和体液防御。当寄生蜂攻击昆虫时,两种反应都会被激活,值得注意的是,酚氧化酶 (PO) 级联和溶解活性是细胞和体液防御的一部分。然而,据我们所知,还没有研究描述过粉虱 Trialeurodes vaporariorum(半翅目:粉虱科)对 Eretmocerus eremicus(膜翅目:粉虱科)攻击的任何免疫反应。因此,本研究的第一个目标是确定最近被 E . eremicus 寄生的粉虱若虫是否表现出任何免疫反应。为此,我们通过比色测定估计了原酚氧化酶 (proPO)、酚氧化酶 (PO) 和溶解活性的水平。第二个目标是评估观察到的粉虱免疫反应是否与之前报道的捕食者 Geocoris punctipes(半翅目:粉虱科)对未寄生若虫的偏好有关。因此,我们向捕食者提供了未寄生和新近寄生的若虫。我们的研究结果表明,E . eremicus 对粉虱若虫的寄生会导致 proPO 和 PO 水平升高,以及溶解活性降低。此外,我们发现 G . punctipes 对未寄生若虫的偏好并不高于新近寄生的若虫。T . vaporariorum 的若虫激活了针对 E . eremicus 的 PO 通路;但是,proPO 和 PO 水平的升高是以溶解活性降低为代价的。此外,之前报道的对未寄生若虫的偏好在我们的实验中并没有发现,这表明诱导的免疫反应不会影响 G. punctipes 的捕食行为。
抽象的昆虫是地球上庞大而高度多样的动物。这一群体的多样性广泛取决于气候,生态和朝代因素,这就是为什么地球的每个角落和地球角都由昆虫的不同组成组成的原因。进行了这项研究,以估计位于纳梅里国家公园附近的印度阿萨姆邦巴利帕拉不同地点的昆虫物种的多样性。从该地区报告了23个家庭中分布于23个家庭的32种物种。发现主要的顺序是鳞翅目,其次是鞘翅目。记录的其他订单是双翅目,骨翅目,半翅目,膜翅目,odonata,Dermaptera和Blattodea。这项研究将有助于详细探索该特定地区的昆虫物种。关键字:阿萨姆邦,生物多样性,保护,昆虫,传粉媒介
CRISPR/Cas9 技术可将遗传技术扩展到以前无法进行遗传分析的昆虫害虫。我们报告了在玻璃翅尖足猎蝽 (GWSS) Homalodisca vitripennis 中建立遗传分析的结果,该昆虫是加利福尼亚州农业中一种重要的叶蝉害虫。我们使用一种新颖而简单的方法,在宿主植物上进行原位胚胎显微注射,获得了超过 55% 的朱砂和白色眼色素位点的高频率诱变。通过配对交配,我们获得了 100% 的 w 和 cn 等位基因到 G3 代的传递,并且还确定了这两个基因都位于常染色体上。我们对翅膀表型的分析意外地发现了蝶啶色素参与了翅膀和翅脉着色,表明这些色素的作用不仅限于眼睛颜色。我们利用扩增子测序来检查注射卵对成虫造成的脱靶诱变程度,结果发现脱靶诱变程度可以忽略不计或根本不存在。我们的数据表明,GWSS 可以轻松开发为半翅目昆虫的遗传模型系统,从而能够研究有助于入侵害虫和植物病原体载体成功的特征。这将促进新的遗传控制策略。