推荐引文 推荐引文 Zeamer,Abigail L.;萨利夫,玛丽·克莱尔;安新明;博杜安,弗朗西斯卡·L.;豪斯,史黛西·L.;史蒂文斯,詹妮弗·S.;曾东林;内兰,托马斯·C.;克利福德,加里·D.;林斯塔特,莎拉·D.;劳赫,斯科特·L.;斯托罗,艾伦·B.;莱万多夫斯基,克里斯托弗;穆西,保罗一世;亨德利,菲利斯·L.;谢赫,索菲亚;琼斯,克里斯托弗·W.;潘克斯,布列塔尼·E.;斯沃,罗伯特·A.;劳伦·A·胡达克;帕斯夸尔,何塞·L.;马克·J·西蒙;哈里斯,艾丽卡;皮尔逊,克莱尔;峰,大卫A.;商人,罗兰·C.;多迈尔,罗伯特·M.;拉斯列夫,尼尔斯·K.;奥尼尔,布莱恩·J.;塞尔戈特,宝琳娜; Sanchez, Leon D.;Bruce, Steven E.;Kessler, Ronald C.;Koenen, Karestan C.;McLean, Samuel A.;Bucci, Vanni;以及 Haran, John P.,《微生物组与创伤应激暴露后不良创伤后神经精神后遗症发展之间的关系》(2023 年)。爱因斯坦健康论文。论文 25。https://jdc.jefferson.edu/einsteinfp/25
参考文献1。KDIGO 2021肾小球疾病治疗的临床实践指南。肾脏INT 2021; 100:S1-S276; 2。投手D,Braddon F,Hendry B,Mercer A,Osmaston K,Saleem MA,Steenkamp R,Wong K,Turner AN,Wsang K,Gale DP,Gale DP,Barratt J.IgA肾病的长期结局。 cjasn 2023; 18:727-38; 3。 Koopman Jje,Van Essen MF,Rennke HG,De Vries APJ,Van Kooten C.在健康和患病的肾脏中膜攻击复合物的沉积。 前疫苗2021; 11:599974; 4。 le Stang MB,Gleeson PJ,Daha MR,Monteiro RC,Van KootenC。 从初始观察到潜在的补体靶向疗法。 MOL IMMUNOL 2021; 140:1-11; 5。 Novak J,Barratt J,Julian BA,Renfrow MB。 IgA肾病中IgA1分子的异常糖基化。 Semin Nephrol 2018; 38(5):461-76; 6。 Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J. 当前对补体在IgA肾病中的作用的理解。 J Am Soc Nephrol 2015; 26:1503-12。IgA肾病的长期结局。cjasn 2023; 18:727-38; 3。Koopman Jje,Van Essen MF,Rennke HG,De Vries APJ,Van Kooten C.在健康和患病的肾脏中膜攻击复合物的沉积。前疫苗2021; 11:599974; 4。le Stang MB,Gleeson PJ,Daha MR,Monteiro RC,Van KootenC。从初始观察到潜在的补体靶向疗法。MOL IMMUNOL 2021; 140:1-11; 5。 Novak J,Barratt J,Julian BA,Renfrow MB。 IgA肾病中IgA1分子的异常糖基化。 Semin Nephrol 2018; 38(5):461-76; 6。 Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J. 当前对补体在IgA肾病中的作用的理解。 J Am Soc Nephrol 2015; 26:1503-12。MOL IMMUNOL 2021; 140:1-11; 5。Novak J,Barratt J,Julian BA,Renfrow MB。 IgA肾病中IgA1分子的异常糖基化。 Semin Nephrol 2018; 38(5):461-76; 6。 Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J. 当前对补体在IgA肾病中的作用的理解。 J Am Soc Nephrol 2015; 26:1503-12。Novak J,Barratt J,Julian BA,Renfrow MB。IgA肾病中IgA1分子的异常糖基化。 Semin Nephrol 2018; 38(5):461-76; 6。 Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J. 当前对补体在IgA肾病中的作用的理解。 J Am Soc Nephrol 2015; 26:1503-12。IgA肾病中IgA1分子的异常糖基化。Semin Nephrol 2018; 38(5):461-76; 6。Maillard N,Wyatt RJ,Julian BA,Kiryluk K,Gharavi A,Fremeaux-Bacchi V,Novak J.当前对补体在IgA肾病中的作用的理解。J Am Soc Nephrol 2015; 26:1503-12。
Guy Lloyd 博士名誉秘书应用程序。 2020 年 6 月 3 日 安德鲁·阿奇博尔德博士当选名誉秘书。 2022 年 6 月 8 日 Andrew Ng 教授教育与研究副总裁应用程序。 2020 年 6 月 3 日 Shouvik Haldar 博士当选教育副总裁。 2022 年 6 月 8 日 Mark Westwood 博士副总裁培训应用程序。 2022 年 6 月 8 日 Cara Hendry 博士 企业财务与开发应用程序副总裁。 2021 年 6 月 9 日 Neil Swanson 博士临床标准应用程序副总裁。 2022 年 6 月 8 日 Amitava Banerjee 博士 数字、通信和营销应用副总裁。 2022 年 6 月 8 日 Abhishek Joshi 博士专业和社会道德应用程序副总裁。 2022 年 6 月 8 日 Alison Calver 博士培训研究副总裁。 2022 年 6 月 8 日,马尔科姆·贝尔先生非执行受托人应用程序。 2016 年 12 月 1 日 Peter Weissberg 教授非执行受托人 Res。 2022 年 5 月 12 日 Melissa Coutino 女士非执行受托人应用程序。 2019 年 6 月 5 日 Cheryl Lee 女士非执行受托人应用程序。 2022 年 3 月 12 日布鲁斯·基奥爵士非执行受托人申请。 2019 年 6 月 5 日 David Lawrence 先生非执行受托人应用程序。 2018 年 4 月 4 日 Paul Turner 先生非执行受托人应用程序。 6 月 5 日
课程信息BIOL 428非洲生物多样性2025讲师:麦吉尔大学生物学系安德鲁·亨德里(Andrew Hendry)一起学习和探索肯尼亚的生物多样性(生物多样性)。基本方法以不同时间和地点进行生物多样性调查为中心。将借助双筒望远镜,摄像机和声音记录(例如App Merlin)进行调查。标识将通过书籍,各种应用程序和在线资源来促进。观察结果将被上传到“社区科学”数据库,尤其是intatorist。基于上次教授本课程的经验;我们创建了一个网页(右图),概述了过程和资源 - 转到:https://sites.google.com/view/meafss。鉴于肯尼亚某些网站可能会出现低带宽的可能性,我建议您在班级启动之前探索网页 - 并下载在此推荐的各种程序和资源。我将在课程开始时建立一个inaturalist的“项目”。,我们将出于课程的目的加入该项目。识别物种是一回事 - 但是了解它们是另一回事!努力迈向这种理解,学生将准备一个或多个在行为观察期间进行的观察和录音的书面摘要(例如Weaverbirds)。在课程结束时,学生将就有关Inaturalist及其用途的科学论文进行演讲 - 这些演示将整合在实施生物多样性调查期间获得的经验。
Fotios Petropoulos 1, *,Daniele Apiletti 2,Vassilios Assimakopoulos 3,Mohamed Zied Babai 4,Devon K. Barrow 5,Souhaib Ben Taieb 6,Christoph Bergmeir 7,Ricardo Bergmeir 7,Ricardo J. Bessa 8,9 14,Michael P. Clements 15,Clara Cordeiro 16,17,Fernando Luiz Cyrino Oliveira 18,Shari de Baets 19,Alexander Dokmumentov 20,Jone Pipson,Philip 29 Hans Franses 22,David T. Frazier 23 A GUIDOLIN 26,Massimo Guidolin 28,Ulrich Gujia Gujia 2019 26,Nigel Harvey 31,David F. Hendry 32,Ross Hollyman 1,Tim Januschowski 33,Jooyoung Joyoung Joon 34,Victor Richord R. Jose R. Jose 35,Yanfei Kang 36,Yanfei Kang 36,Yanfei Kang 36 1,Konstantia Litsiou 42,Spyros Makridakis 43,Gael M. Martin 23,Andrew B. Martinez 44,45,Sheik Meeran 1,Theodore Modis 46,Konstantinos Nikolopoulos 47 Pedio 53,54,Diego J. Pedregal 55,Pierre Pinson 56,PatríciaRamos57,David E. Rapach 58,Tahrea Rea,James Rosta,60 Talagala 65,Len Tashman 66,Dimitrios Thomako 67,Thorat Thorazi 68 IS 69、70,JuanMónTraperoArenas 55,Xiaoqian Wang 36,Robert L. Winkler 71,Alisa Yusa Yusapova 10,Florian Ziel 72,Florian Ziel 72
南方海洋在大气CO 2隔离中起着关键作用,占现代海洋吸收的人为CO 2的约40-50%(Landschützer等,2015; Gruber等,2019)。南大洋在调节轨道和千禧年时标的地质过去的二氧化碳(P CO 2)的大气部分压力方面也起着关键作用(Anderson等,2009; Sigman等,2010; Gottschalk等,2016)。此外,南大洋对热带地区的大气和海洋循环影响远程影响,包括低纬度大气CO 2交流(Sarmiento等,2004; Hendry and Brzezinski,2014; Sigman等,Sigman等,2021)。因此,南大洋是全球气候系统的关键组成部分,其对大气CO 2在一系列时标的大气中的影响(Fischer等,2010; Rae等,2018; Dong等,2024)。然而,南大洋的过程和机制对大气P CO 2和全球气候变化的影响仍未得到充分了解。为了填补这一差距,该研究主题整合了现代观察结果,古气候数据和模型模拟的结果,以从碳周期的角度促进全球气候变化中对南方海洋的重要性的全面理解。该研究主题收集了12篇文章,其中包括11篇原始研究文章和1个观点文章。这些文章可以分类为下面探讨的三个主题。文章集中于碳和其他营养因素和水量因子的原位分析,拆卸循环对大气P CO 2的影响的最新进展以及碳循环(相关)过程的古生证重建。
遗传适应和表型可塑性调节性状表达的贡献决定了林木在复杂环境中的繁荣。在进化 - 遗传学中,这两种机制被认为可以塑造植物的表型(Nicotra等,2010)。在个体之间可比较的质量的最简单情况下,在给定环境中评估的适应性性状差异可以预见其他未经测试的环境中的分化模式。通常,存在基因型逐个环境(G×e)相互作用表明在种内水平上的可塑性(Matesanz&Ramírez-Valiente,2019年)。在过去的几十年中,越来越多的文献审查了种内分化在功能类型和生物群落跨功能性状的可塑性中的作用和适应性含义(Lortie&Hierro,2022年)。然而,可塑性和遗传分化与表型变异性的相对重要性仍然不足以研究(Leites&Benito-Garz,2023年;Merilä&Hendry,2014年)。常见的花园实验有助于量化长寿植物中的这种影响,从而评估特殊面对全球变化的适应性和适应潜力。研究植物对环境不稳定性的生态和微观进化反应的重要但经常偏僻的方面在于解释中性和适应性过程,确定了特定于特定的分化和可塑性(Ovaskainen等,2011)。中性变化是通过冰川,遗传瓶颈和通过距离分离的过去再殖民途径来确定的。与遗传漂移和迁移相关,此类人口过程留下了一个植物学标记,该标记通常会导致分层种群结构,不一定与真正的适应性分化有关。在某些情况下,可以在几个遗传组(或“基因库”)中有效地总结这种结构,但是
在学龄前进入正规教育对儿童构成了重要的挑战。学龄前儿童经历了增加的学习要求,并且必须适应一个结构化的环境,在该环境中,他们必须按照规则行事。为了在这项工作中取得成功,儿童必须开发所谓的抑制控制(IC),这是指抑制能力反应或无关信息以满足某些目标或上下文需求的能力(Diamond,2013年)。这是根据Miyake和Friedman模型的执行功能的三个主要组成部分之一(Miyake等,2000; Friedman和Miyake,2017)。有一些证据表明生命的前5年可能对IC发展至关重要(Garon等,2008)。在此期间,IC技能经历了快速变化,显示了整个儿童和青春期的稳定速度(Klenberg等,2001; Simpson和Riggs,2006; Ordaz等,2013)。这些发现表明,IC的个体差异从幼儿开始在某种程度上变得稳定。为了支持这一建议,五岁生日后儿童的IC技能的个体差异可以预测重要的发展成果,例如学术成就或成年后的社会调整(McClelland and Cameron,2011; Mof等,2011)。但是,直到5岁的IC的发展仍未得到充实。有关IC发展的文献更多地关注从童年到青春期的时期。多年来,研究已忽略了年龄较小的IC。关于IC在生命的头几年中最初如何发展的个体差异仍然有限的数据(Hendry等,2016)。与婴儿和幼儿相比,该领域差距的主要原因之一是,IC在老年儿童中可以更好地衡量。一般而言,言语前儿童的语言和运动技能受到限制,从而降低了他们可以执行大多数经典IC范式的可靠性(Conejero and Rueda,2017年)。
Fotios Petropoulos 1, ∗ , Daniele Apiletti 2 , Vassilios Assimakopoulos 3 , Mohamed Zied Babai 4 , Devon K. Barrow 5 , Souhaib Ben Taieb 6 , Christoph Bergmeir 7 , Ricardo J. Bessa 8 , Jakubro Bijak 10 , Jelan Jelan Broywell 10 . , Claudio Carnevale 12 , Jennifer L. Castle 13 , Pasquale Cirillo 14 , Michael P. Clements 15 , Clara Cordeiro 16,17 , Fernando Luiz Cyrino Oliveira 18 , Shari De Baets 19 , Alexander Dokumentov 20 , Joan Piot Piot , Philip 29 ses 22 , David T. Frazier 23 , Michael Gilliland 24 , M. Sinan G¨on¨ul 25 , Paul Goodwin 1 , Luigi Grossi 26 , Yael Grushka-Cockayne 27 , Mariangela Guidolin 26 , Massimo Guidolin 28 , Ulrich Guojio 2003 26 , Nigel Harvey 31 , David F. Hendry 32 , Ross Hollyman 1 , Tim Januschowski 33 , Jooyoung Jeon 34 , Victor Richmond R. Jose 35 , Yanfei Kang 36 , Anne B. Koehler 37 , Stephan Kolassa , Nikolas , 139 va 40 , Feng Li 41 , Konstantia Litsiou 42 , Spyros Makridakis 43 , Gael M. Martin 23 , Andrew B. Martinez 44,45 , Sheik Meeran 1 , Theodore Modis 46 , Konstantinos Nikolopoulos 47 , Dilek ¨ ¨ ¨ ¨ Pastagnios , 489 , Pastagnios agiotelis 50 , Ioannis Panapakidis 51 , Jose M. Pav ́ıa 52 , Manuela Pedio 53,54 , Diego J. Pedregal 55 , Pierre Pinson 56 , Patr ´ıcia Ramos 57 , David E. Rapach 58 , J. Reade 59 , James Romi-Bahr baszek 61 , Georgios Sermpinis 62 , Han Lin Shang 63 , Evangelos Spiliotis 3 , Aris A. Syntetos 60 , Priyanga Dilini Talagala 64 , Thiyanga S. Talagala 65 , Len Tashman 66 , Dimitrios Thomakos 67 , Thorin Thorin 68 9.70, Juan Ram´on Trapero Arenas 55, Xiaoqian Wang 36, Robert L. Winkler 71, Alisa Yusupova 10, Florian Ziel 72
Fotios Petropoulos 1 , * , Daniele Apiletti 2 , Vassilios Assimakopoulos 3 , Mohamed Zied Babai 4 , Devon K. Barrow 5 , Souhaib Ben Taieb 6 , Christoph Bergmeir 7 , Ricardo J. Bessa , Jakub John 89 , Ejak Ejak Boylan 。 10 , Jethro Browell 11 , Claudio Carnevale 12 , Jennifer L. Castle 13 , Pasquale Cirillo 14 , Michael P. Clements 15 , Clara Cordeiro 16 , 17 , Fernando Luiz Cyrino Oliveira 18 , Shari De Baets 19 , Alexander Dokumento , Jovnemento 20埃里森 9 , 皮奥特·菲泽德 21 , 菲利普·汉斯·弗朗西斯 22 , 大卫·T·弗雷泽 23 , 迈克尔·吉利兰 24 , M. Sinan Gönül 25 , 保罗·古德温 1 , 路易吉·格罗西 26 , 雅埃尔·格鲁什卡-科凯恩 27 , Mariangela Guidolin 26 , 马西莫·吉洛·乌尔里希冈特 29 , 郭晓佳 30 , 雷纳托·古塞奥 26 , 奈杰尔·哈维 31 , 大卫·F·亨德利 32 , 罗斯·霍利曼 1 , 蒂姆·贾努肖夫斯基 33 , Jooyoung Jeon 34 , 维克多·里士满·R·何塞 35 , 扬·康菲 36 , 安妮·B. , Stephan Kolassa 38 , 10 , Nikolaos Kourentzes 39 , 10 , Sonia Leva 40 , Feng Li 41 , Konstantia Litsiou 42 , Spyros Makridakis 43 , Gael M. Martin 23 , Andrew B. Martinez 44 , 44 , Sheik Meodore , Modis 465 ,康斯坦丁诺斯·尼科洛普洛斯 47 , 迪莱克·恩卡尔 25 , 阿莱西亚·帕卡尼尼 48 , 49 , 阿纳斯塔西奥斯·帕纳吉奥泰利斯 50 , 扬尼斯·帕纳帕基迪斯 51 , 何塞·M·帕维亚 52 , 曼努埃拉·佩迪奥 53 , 54 , 迭戈·J·佩德雷 55 , 皮埃尔·平森 , 56帕特里夏·拉莫斯 57 、大卫·E·拉帕奇 58 、J·詹姆斯·里德 59 、巴曼·罗斯塔米-塔巴尔 60 、米哈乌·鲁巴斯泽克 61 、乔吉奥斯·塞尔皮尼斯 62 、韩林尚 63 、伊万杰洛斯·斯皮利奥蒂斯 3 、阿里斯·A·辛特 60 、塔拉·普里扬 64 、塔拉加普里阳Thiyanga S. Talagala 65 , Len Tashman 66 , Dimitrios Thomakos 67 , Thordis Thorarinsdottir 68 , Ezio Todini 69 , 70 , Juan Ramón Trapero Arenas 55 , 王晓倩 36 , Robert L. Winkler 71 , Alisa Yusuva , Florian Yusuva 10 10 72