⋄Artem Boichuk,tau(正在进行)。⋄Matiaspaatelainen,tau(正在进行)。⋄Henning Meteling,Tau(正在进行)。samivesamäki,tau(正在进行)。⋄tau(正在进行)的Roshan Nsare。⋄Yasaman Nemati,Tau(正在进行)。⋄Zixuan Deng,Tau(正在进行)。 ⋄玛丽·伊索米基(Mariisomäki),tau(正在进行)。 ⋄tau(正在进行)的Antti Siiskonen。 ⋄亚历克斯·伯丁(Alex Berdin),tau(毕业生 2024年4月)。 论文标题:“偶氮纤维中的全息记录”。 ⋄金·昆兹(Kim Kuntze),tau(毕业生 2023年8月)。 论文标题:“红光照相的策略”。 suvi holmstedt,tau(毕业生 2021年9月)。 论文标题:“基于生物量的com磅转换为添加值化学物质”。 ⋄Markuslahikainen,tau(毕业生 2021年10月)。 论文标题:“适用于软机器人的光响应聚合物的高级控制策略”。 ⋄jagadish salunke,tau(grad。 2021年1月)。 论文标题:“低成本势噻嗪和基于吡啶的孔孔传输材料,用于卤化物钙钛矿太阳能电池”。 ⋄ocies wani,tau(毕业生 2019年5月)。 论文标题:“来自液晶网络的生物启发的轻机器人”。 ⋄MikkoPoutanen,Aalto(毕业生 2018年9月)。 论文标题:“功能软材料中光和自组装的相互作用 - 从照片对照到光子结构”。 ⋄Mattivirkki,tut(毕业生 2017年10月)。 论文标题:“光电批准光学非线性的超分子材料”。 2013年6月)。⋄Zixuan Deng,Tau(正在进行)。⋄玛丽·伊索米基(Mariisomäki),tau(正在进行)。⋄tau(正在进行)的Antti Siiskonen。⋄亚历克斯·伯丁(Alex Berdin),tau(毕业生2024年4月)。论文标题:“偶氮纤维中的全息记录”。⋄金·昆兹(Kim Kuntze),tau(毕业生2023年8月)。论文标题:“红光照相的策略”。suvi holmstedt,tau(毕业生2021年9月)。论文标题:“基于生物量的com磅转换为添加值化学物质”。⋄Markuslahikainen,tau(毕业生2021年10月)。论文标题:“适用于软机器人的光响应聚合物的高级控制策略”。⋄jagadish salunke,tau(grad。2021年1月)。论文标题:“低成本势噻嗪和基于吡啶的孔孔传输材料,用于卤化物钙钛矿太阳能电池”。⋄ocies wani,tau(毕业生2019年5月)。论文标题:“来自液晶网络的生物启发的轻机器人”。⋄MikkoPoutanen,Aalto(毕业生2018年9月)。论文标题:“功能软材料中光和自组装的相互作用 - 从照片对照到光子结构”。⋄Mattivirkki,tut(毕业生2017年10月)。论文标题:“光电批准光学非线性的超分子材料”。2013年6月)。⋄詹妮·科斯克拉(Jenni Koskela),阿尔托(Grad。2015年1月)。论文标题:“含有偶氮苯的材料中的轻型动作:从超分子设计到新应用”。⋄jaana vapaavuori,aalto(Grad。论文标题:“通过超分子功能化的有效光反应偶氮苯材料的设计”。
个人信息 姓名:Mario Caironi 工作地点:意大利米兰 IIT 纳米科学技术中心 电子邮件:mario.caironi@iit.it 电话:研究员唯一标识符:研究员 ID O-2745-2013 个人资料网页:https://www.iit.it/web/printed-and-molecular- electronics/our-staff-details/-/people/mario-caironi研究小组网页:https://www.iit.it/web/printed-and-molecular- electronics Autorizzo il trattamento dei miei dati individuali ai sensi del D.lgs。 196 del 30 giugno 2003 e smi 教育 2004 – 2007 博士,viva 日期:2007 年 5 月 5 日;学位授予日期:2007 年 10 月 18 日,以“优异成绩”获得意大利米兰理工大学电子与信息系 博士论文题目:《基于有机半导体的光电探测器和电双稳态存储设备》。 博士生导师:Marco Sampietro 教授 1997 – 2003 电子工程硕士,100/100 意大利米兰理工大学电子与信息系 1992 – 1997 高中文凭,60/60 “优异成绩”,L. Mascheroni”,贝加莫,意大利 博士后培训 2007 – 2010 博士后研究员,在英国剑桥大学卡文迪什实验室 FRS Henning Sirringhaus 教授的指导下 现任职位 2019 终身高级科学家,CNST@PoliMi,IIT,意大利米兰 前任职位 2017 – 2019 终身研究员,第二阶段,意大利米兰理工学院(IIT)纳米科学与技术中心@PoliMi 2014 – 2017 终身研究员,第一阶段,意大利米兰理工学院(IIT)纳米科学与技术中心@PoliMi 2010 – 2014 团队负责人,意大利米兰理工学院(IIT)纳米科学与技术中心@PoliMi 学术任职情况 2018 – 2020 博士课程“有机电子学:原理、设备和应用”的联合组织者和讲师 米兰理工大学信息技术博士学院 2014 – 2021 受邀讲师,“光伏物理学”课程研讨会,G. Lanzani 教授 米兰理工大学物理工程系,米兰 (IT) 2004 – 2010 受邀讲师,“电子设备和电路的聚合物材料”课程研讨会,物理工程教授,都灵理工大学,都灵 (IT) 2004 – 2007 在线教学助理,“电工技术 A”在线课程,A. Storti-Gajani 教授 米兰理工大学信息工程系,莱科 (IT) 2004 – 2006 实验室助理,“模拟电子学”和“电子学基础”课程,米兰理工大学电子工程教授,米兰 (IT) 2004 – 2006 导师,“Orcad PSpice 和微控制器”实践课程,F. Zappa 教授电子工程,米兰理工大学,米兰 (IT) 2003 – 2006 助教,“电子学基础”课程,C. Guazzoni 教授电子工程,米兰理工大学,米兰 (IT) 科学服务
亚历山德拉·维多利亚·巴斯利、1,2,4,20 O´scar Gutie´rrez-Gutie´rrez、1,2,20 Elke Hammer、3,5 Fabian Koitka、1,2,4 Amin Mirzaiebadizi、6 Martin Steinegger、7 Constantin Pape、4,8 Linda Bo´hmer、1 Henning Schroeder、9 Mandy克莱因索格、1,2 梅兰妮·恩格勒、10 离子·克里斯蒂安·西尔斯泰亚、10 洛萨·格雷默、11,12 迪特·威尔博尔德、11,12 珍妮·阿尔特姆·乌勒、13,14 菲利克斯·马尔巴赫、15,16 格德·哈森福斯、1,2,4 沃尔夫拉姆-休伯特·齐默尔曼、2,4,17,18穆罕默德·礼萨·艾哈迈迪安,6 Bernd Wollnik, 2,4,19 和 Lukas Cyganek 1,2,4,18,21,* 1 哥廷根大学医学中心心脏病学和肺病学诊所干细胞科,哥廷根,德国 2 德国心血管研究中心 (DZHK),哥廷根,德国 3 德国心血管研究中心 (DZHK),格赖夫斯瓦尔德,德国 4 哥廷根大学卓越集群“多尺度生物成像:从分子机器到可兴奋细胞网络”(MBExC),哥廷根,德国 5 格赖夫斯瓦尔德大学医学院遗传学和功能基因组学跨学院研究所,格赖夫斯瓦尔德,德国 6 乌塞尔多夫海因里希海涅大学医学院和大学医院生物化学和分子生物学 II 研究所,乌塞尔多夫,德国 7 生物科学学院,首尔国立大学,首尔,韩国 8 乔治·奥古斯特·哥廷根大学计算机科学研究所,哥廷根,德国 9 马克斯·普朗克多学科科学研究所 NMR 信号增强组,哥廷根,德国 10 乌尔姆大学应用生理学研究所,乌尔姆,德国 11 海因里希·海涅大学物理生物学研究所,乌塞尔多夫,德国 12 生物信息处理研究所、结构生物化学研究所(IBI-7),J ulich GmbH 公司,J ulich,德国 13 科隆大学医学院和科隆大学医院科隆基因组学中心,科隆,德国 14 柏林医学系统生物学研究所基因组学平台,马克斯·德尔布吕克分子医学中心 - 柏林,德国 15 科隆大学医院人类遗传学研究所,科隆,德国 16 研究所海德堡大学人类遗传学研究所,海德堡,德国 17 哥廷根大学医学中心药理学和毒理学研究所,哥廷根,德国 18 弗劳恩霍夫转化医学和药理学研究所 ITMP 转化神经炎症和自动显微镜研究所,哥廷根,德国 19 哥廷根大学医学中心人类遗传学研究所,哥廷根,德国 20 这些作者贡献相同 21 主要联系人 *通信地址:lukas.cyganek@gwdg.de https://doi.org/10.1016/j.celrep.2024.114448
使用重新配置的Covid-19疫苗的年度疫苗接种的潜在影响:来自美国的教训Covid-19 Scenario Modeling Hub Sung-Mok Jung 1, Sara L. Loo 2, Emily Howerton 3, Lucie Contamin 4, Claire P. Smith 2, Erica C. Carcelén 2, Katie Yan 3, Samantha J. Bents 5, John Levander 4, Jessi Espino 4, Nicholas G. Reich 6, Joseph C. Lemaitre 1, Koji Sato 2,Clif D. McKee 2,Alison L. Hill 2,Matteo Chinazzi 7,Jessica T. Davis 7,Kunpeng Mu 7,Alessandro Vespignani 7,Erik T. Rossenrom 8,Sebastian A. Rodriguez-Cartes 8,Julie S. Ivy 8,Maria E. Maria Mayorga 8,Julie 8,Julie 8,Maria Mayorga 8,Julie 8. España9,Sean Cavany 9,Sean M. Moore 9,Alex Perkins 9,Shi Chen 10,Rajib Paul 10,Daniel Janies 10,Jean-Claude Thill 10,Ajitesh Srivastava 11,Majd Al Aawar 11,Kaiming Bi 12,Kaiming Bi 12,Shraddha Ramdhas Bandardas Bandardas Bandardas bandards bandass Bouchanita 13Fox 14 , Lauren Ancel Meyers 12 , Przemyslaw Porebski 15 , Srini Venkatramanan 15 , Aniruddha Adiga 15 , Benjamin Hurt 15 , Brian Klahn 15 , Joseph Outten 15 , Jiangzhuo Chen 15 , Henning Mortveit 15 , Amanda Wilson 15 , Stefan Hoops 15 , Parantapa Bhattacharya 15 , Dustin Machi 15,Anil Vullikanti 15,Bryan Lewis 15,Madhav Marathe 15,Harry Hochheiser 4,Michael C. Runge 16,Katriona Shea 3,Shaun Truelove 2,CécileViboud 5,Justin Lesserler 5,Justin Lesserler 1,2 * 1米斯丁·莱西勒1,2 * 1北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州Chapel,Chapelina,Chapolina,Chapolina,Chapolina,Cahelina,Caheolina,Carolina,Carolina; 2约翰·霍普金斯彭博公共卫生学院,马里兰州巴尔的摩; 3宾夕法尼亚州立大学宾夕法尼亚州立大学; 4宾夕法尼亚州匹兹堡匹兹堡大学; 5福加蒂国际中心,美国国立卫生研究院,马里兰州贝塞斯达; 6马萨诸塞州阿默斯特大学,马萨诸塞州阿默斯特; 7东北大学,马萨诸塞州波士顿; 8北卡罗来纳州立大学,北卡罗来纳州罗利; 9圣母大学,印第安纳州巴黎圣母院;北卡罗来纳州夏洛特市北卡罗来纳大学10号分校; 11南加州大学,加利福尼亚州洛杉矶;德克萨斯州奥斯汀的德克萨斯大学12分校;德克萨斯州埃尔帕索的德克萨斯大学13分校;佐治亚州乔治亚大学14号; 15弗吉尼亚大学,弗吉尼亚州夏洛茨维尔; 16美国地质调查局,马里兰州劳雷尔 *往来:
VIII。 参考文献[1] Preskill,J。量子计算40年后。 Arxiv 2021,Arxiv:2106.10522。 [2] Arute,f。; Arya,K。; Babbush,r。培根,d。; Bardin,J.C。; Barends,R。; Martinis,J.M。 使用可编程超导处理器的量子至上。 自然2019,574,505–510。 [CrossRef] [PubMed] [3] Bova,F。; Goldfarb,A。; Melko,R.G。 量子计算的商业应用。 EPJ量子技术。 2021,8,2。 [CrossRef] [PubMed] [4] Castelvecchi,D。从量子黑客中拯救互联网的种族。 自然2022,602,198–201。 [CrossRef] [PubMed] [5] Steve,M。网络犯罪,每年在2025年到达世界10.5万亿美元。 网络犯罪杂志。 2020年11月13日。 在线可用:https://cybersecurityventures.com/cybercrime-damages-6---------- triml-2021(于2022年8月8日访问)。 [6] Cornea,A.A。; Obretin,A.M。关于量子计算环境中软件开发迁移的安全问题;布加勒斯特经济学大学信息学和经济控制学系:罗马尼亚布加勒斯特,2002年;第5卷,pp。 12–17,ISSN 2619-9955。 [Crossref] [7] Rozell,D.J。 现金是国王。 自然2022,16,2022。 [CrossRef] [PubMed] [8] De Wolf,R。量子计算机对社会的潜在影响。 道德信息。 技术。 2017,19,271。 [Crossref] [9] Grimes,R.A。加密启示录:准备量子计算破坏当今加密的一天;约翰·威利(John Wiley&Sons):美国新泽西州霍博肯,2019年。 Arxiv 2022,Arxiv:2205.02761。VIII。参考文献[1] Preskill,J。量子计算40年后。Arxiv 2021,Arxiv:2106.10522。[2] Arute,f。; Arya,K。; Babbush,r。培根,d。; Bardin,J.C。; Barends,R。; Martinis,J.M。使用可编程超导处理器的量子至上。自然2019,574,505–510。[CrossRef] [PubMed] [3] Bova,F。; Goldfarb,A。; Melko,R.G。量子计算的商业应用。EPJ量子技术。 2021,8,2。 [CrossRef] [PubMed] [4] Castelvecchi,D。从量子黑客中拯救互联网的种族。 自然2022,602,198–201。 [CrossRef] [PubMed] [5] Steve,M。网络犯罪,每年在2025年到达世界10.5万亿美元。 网络犯罪杂志。 2020年11月13日。 在线可用:https://cybersecurityventures.com/cybercrime-damages-6---------- triml-2021(于2022年8月8日访问)。 [6] Cornea,A.A。; Obretin,A.M。关于量子计算环境中软件开发迁移的安全问题;布加勒斯特经济学大学信息学和经济控制学系:罗马尼亚布加勒斯特,2002年;第5卷,pp。 12–17,ISSN 2619-9955。 [Crossref] [7] Rozell,D.J。 现金是国王。 自然2022,16,2022。 [CrossRef] [PubMed] [8] De Wolf,R。量子计算机对社会的潜在影响。 道德信息。 技术。 2017,19,271。 [Crossref] [9] Grimes,R.A。加密启示录:准备量子计算破坏当今加密的一天;约翰·威利(John Wiley&Sons):美国新泽西州霍博肯,2019年。 Arxiv 2022,Arxiv:2205.02761。EPJ量子技术。2021,8,2。[CrossRef] [PubMed] [4] Castelvecchi,D。从量子黑客中拯救互联网的种族。自然2022,602,198–201。[CrossRef] [PubMed] [5] Steve,M。网络犯罪,每年在2025年到达世界10.5万亿美元。网络犯罪杂志。2020年11月13日。在线可用:https://cybersecurityventures.com/cybercrime-damages-6---------- triml-2021(于2022年8月8日访问)。[6] Cornea,A.A。; Obretin,A.M。关于量子计算环境中软件开发迁移的安全问题;布加勒斯特经济学大学信息学和经济控制学系:罗马尼亚布加勒斯特,2002年;第5卷,pp。12–17,ISSN 2619-9955。 [Crossref] [7] Rozell,D.J。 现金是国王。 自然2022,16,2022。 [CrossRef] [PubMed] [8] De Wolf,R。量子计算机对社会的潜在影响。 道德信息。 技术。 2017,19,271。 [Crossref] [9] Grimes,R.A。加密启示录:准备量子计算破坏当今加密的一天;约翰·威利(John Wiley&Sons):美国新泽西州霍博肯,2019年。 Arxiv 2022,Arxiv:2205.02761。12–17,ISSN 2619-9955。[Crossref] [7] Rozell,D.J。现金是国王。自然2022,16,2022。[CrossRef] [PubMed] [8] De Wolf,R。量子计算机对社会的潜在影响。道德信息。技术。2017,19,271。[Crossref] [9] Grimes,R.A。加密启示录:准备量子计算破坏当今加密的一天;约翰·威利(John Wiley&Sons):美国新泽西州霍博肯,2019年。Arxiv 2022,Arxiv:2205.02761。[10] Schiffer,B.F.量子计算机作为生存风险的放大器。11。Casati,N.M。使用量子计算机在了解文化和全球业务成功中。全球企业的文化;帕尔格雷夫·麦克米伦(Palgrave Macmillan):瑞士夏(Cham),2021年; pp。77–103。 [11] Scott,F.,iii。 量子作为服务的买家指南:用于租用的Qubits。 在线提供:https://www.zdnet.com/article/abuyers-guide-to-quantum-as-a-a-service-qubits-qubits-for-hire/(2021年5月21日访问)。 [12] Sharma,S.K。 ; Khaliq,M。量子计算在软件取证和数字证据中的作用:问题和挑战。 限制。 未来应用。 量子加密。 2021,169–185。 [13] Raheman,F。; Bhagat,T。; Vermeulen,b。 Van Daele,P。零漏洞计算(ZVC)是否有可能? 检验假设。 未来互联网2022,14,238。 [CrossRef] [14] Alagic,G。; Alagic,G。; Alperin-Sheriff,J。; Apon,d。;库珀,D。; dang,q。 Smith-Tone,D。关于NIST量子后加密标准化过程的第一轮的状态报告;美国国家标准技术研究所美国商务部:华盛顿特区,美国,2019年。 在线提供:https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927303(2022年8月8日访问)。 [15] Hoschek,M。量子安全性和6G关键基础架构。 serb。 J. Eng。 托管。 2021,6,1-8。 [CrossRef] [16] Lennart,B。;本杰明,K。 Niko,M。; Anika,P。; Henning,S。何时以及如何为量子加密后做准备。77–103。[11] Scott,F.,iii。量子作为服务的买家指南:用于租用的Qubits。在线提供:https://www.zdnet.com/article/abuyers-guide-to-quantum-as-a-a-service-qubits-qubits-for-hire/(2021年5月21日访问)。[12] Sharma,S.K。; Khaliq,M。量子计算在软件取证和数字证据中的作用:问题和挑战。限制。未来应用。量子加密。2021,169–185。[13] Raheman,F。; Bhagat,T。; Vermeulen,b。 Van Daele,P。零漏洞计算(ZVC)是否有可能?检验假设。未来互联网2022,14,238。[CrossRef] [14] Alagic,G。; Alagic,G。; Alperin-Sheriff,J。; Apon,d。;库珀,D。; dang,q。 Smith-Tone,D。关于NIST量子后加密标准化过程的第一轮的状态报告;美国国家标准技术研究所美国商务部:华盛顿特区,美国,2019年。在线提供:https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927303(2022年8月8日访问)。[15] Hoschek,M。量子安全性和6G关键基础架构。serb。J. Eng。 托管。 2021,6,1-8。 [CrossRef] [16] Lennart,B。;本杰明,K。 Niko,M。; Anika,P。; Henning,S。何时以及如何为量子加密后做准备。J. Eng。托管。2021,6,1-8。[CrossRef] [16] Lennart,B。;本杰明,K。 Niko,M。; Anika,P。; Henning,S。何时以及如何为量子加密后做准备。麦肯锡数字。2022年5月4日。在线提供:https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/when-and-how-to-to-prepor-for-prepor-for-post-post-quantum-cryptography(于2022年8月8日访问)。[17]计算机安全研究中心。量子密码学PQC:研讨会和时间表。nist; 2022年7月7日。在线提供:https://csrc.nist.gov/projects/post-quantum-cryptography/workshops-and-timeline(2022年8月8日访问)。[18] Edlyn,T。有关抗量子的加密标准的NIST公告。立即行动!隐性。2022年7月6日。在线提供:https://www.cryptomathic.com/news-events/blog/the-nist-anist-annoception-on-quantumresistant-cryptography-standards-isandards-is-is-in.-act.-act-now(于2022年8月8日访问)。[19] Mathew,S。旨在防止量子黑客的加密很容易破裂。新科学家。2022年3月8日。在线提供:https://www.newscientist.com/article/2310369-Encryption-meant-to-protect-agep procect-against-quantum-hackers-is-is-seasily-cracked/(于2022年5月28日访问)。
•Kavya Pearlman |创始人兼首席执行官 - XR安全性Initi Ati ve(XRSI)•Marco Magnano |记者; exec。 Communicati ons的总监 - Xr安全概述ini ati ati ve(XRSI)•April Boyd-Noronha |全球D&I顾问 - XR安全性Initi Ati Ve Ve(XRSI); exec。•Kavya Pearlman |创始人兼首席执行官 - XR安全性Initi Ati ve(XRSI)•Marco Magnano |记者; exec。Communicati ons的总监 - Xr安全概述ini ati ati ve(XRSI)•April Boyd-Noronha |全球D&I顾问 - XR安全性Initi Ati Ve Ve(XRSI); exec。
EnergyPLAN 模型自 1999 年以来不断发展,并扩展为目前的 15.1 版本。最初,该模型由 Henrik Lund 开发,并在 EXCEL 电子表格中实现。很快,模型就变得非常庞大,因此,在 2001 年,该模型的主要编程被转换为 Visual Basic(从 3.0 版到 4.4 版)。同时,所有逐小时分布数据都被转换为外部文本文件。总之,这使模型的大小缩小了 30 倍。这次转换是与 Leif Tambjerg 和 Ebbe Münster(PlanEnergi 顾问)合作完成的。2002 年,该模型在 Delphi Pascal 中重新编程为 5.0 版。2003 年,该模型扩展为 6.0 版。这一转变由 Henrik Lund 在 Anders N. Andersen 和 Henning Mæng(能源与环境数据)的帮助和协助下实施。在 6.0 版中,模型得到了扩展,可以计算二氧化碳排放的影响以及当电力供应被视为某个地区整个能源系统的一部分时可再生能源 (RES) 的份额。还增加了分析外部电力市场上不同交易选择的可能性。2005 年春季,该模型扩展为 6.2 版,与 H2RES 模型进行比较研究,重点是可再生岛屿的能源系统分析。这项比较研究是与萨格勒布大学的 Neven Duic 和 Goran Krajacić 共同完成的。作为这项工作的一部分,EnergyPLAN 模型中添加了两种新的电力存储/转换设施的可能性。一种是电力存储单元,可用于建模,例如水力存储或电池存储。另一种是电解器,它能够产生燃料(例如氢气)和热量用于区域供热。此外,与特拉华大学的 Willet Kempton 合作实施了 V2G(车辆到电网)建模设施。2005 年秋季和 2006 年春季,该模型进一步扩展为 6.6 版。主要重点是能够作为欧盟项目 DESIRE 的一部分模拟六个欧洲国家的能源系统。因此,系统中增加了选择更多可再生能源、核能和水力发电以及水库和可逆泵设施的可能性。2006 年夏季和秋季,该模型进一步扩展为 7.0 版。添加了新的组件,例如不同的运输选项和不同的个人加热选项。在博士生 Georges Salgi 的帮助下,实施了压缩空气能量存储 (CAES) 的详细模型。在博士生 Marie Münster 的帮助下,添加并测试了不同的废物利用选项。然而,主要成果是在模拟系统中每个组件的商业经济边际生产成本的基础上,对整个能源系统实施了新的经济模拟。还增加了计算年度社会经济总成本的选项。在博士生 Brian Vad Mathiesen 的帮助下,新选项经过了测试,并应用于丹麦的 2030 能源计划。在奥尔堡大学的 Mette Reiche Sørensen 的帮助下,扩展能源模型的图表被制作并实现到用户界面中,Sørensen 也协助编写了本文档。2010 年初,版本 8 包含了由 Poul Østergaard 帮助开发的结合地热和吸收式热泵的新型废物转化为能源技术设施、由 David Connolly 帮助的新型泵水能储存设施以及由 Poul Østergaard 和 Brian Vad Mathiesen 发起的一些小改进。除此之外,它还成为了单独存储 COST 数据的选项。
122。deepak s gavali,ranjit thaapa,局部和离域π电子对Si/c Haterostructs LI储存特性的协同作用,碳,2020年。https://do.org/10.10.1016/j.carbon.2020.08.076 121。Sabathainam Shammugam,Anjana Hari,Deepak Kumar,Karthik Rajendran,Tangavel Mathimani,A.E。Atabani,Kathirvel Brindhadevi,Arivalagan Pugazhendhi。基因组工程和综合效应方法的最新发展和策略,用于从2020年的微藻生产,燃料,燃料,刚被接受。120。Geetanjali Yadav,Sabarathinam Shanmugam,Ramachandran Sivaramakrishnan,Deepak Kumar,Kathihimani,Kathihvel Brindhadevi,Arivalagan Pugazhendi,Karthik Rajendran。藻类背后的机制和挑战是生物能源生产及其他地区的废水处理选择,燃料,2020年,刚刚接受。119。Nasrallah Iyad,Mahesh Kumar Ravva,Katharina Broch,John Novak,John Armitage,Guilume Schweer,Adanya Sadhanala,John E. Anthony,Jean -Luc Bredas和Henning Sirringhaus。“一种11月的缓解机制,用于使用添加剂捕获芳族噻吩衍生物中的捕获。”高级电子材料,2020年。https://doo.org/10.1002/aelm.202000250。118。Chokshi,Kummeel,Imran Pancha,Khanjan Trivedi,Rahulkumar Maurya,Aru Ghosh和Sandhya Mishra。“绿色Microalga acutodesmus dimorphus对温度敏感性氧化应激条件的生理反应。” Phartiologia Plantarum,2020年。https://doo.org/10.1111/ppl.13193。 117。 116。 115。 112。https://doo.org/10.1111/ppl.13193。117。116。115。112。V. M. Manikandan和Masilamani Vedhanayagam。“用于安全医疗图像传输的新型基于图像缩放的可逆水印方案。” ISA交易,2020年,S0019057820303426。https://doi.org/10.1016/j.isatra.2020.08.019。 Sankar,Velayudham,Murugavel Kathiresan,Bitragunta Sivakumar和Subramaniyan Mannathan。 “芳香胺的锌催化N-烷基化:一种无配体方法。”高级合成与催化,2020年。 https://doi.org/10.1002/adsc.202000499。 k Hemant Kumar Reddy,Ashish K Luhach,Buddhadeb Pradhan,Jatindra Kumar Dash,Diptendu Sinha Roy,一种用于上下文感知的智能城市,可持续性城市和社会的遗传算法,用于节能雾气层资源,2020年。 https://doi.org/10.1016/j.scs.2020.102428 114。 Nilanjon Naskar, Martin F. Schneidereit, Florian Huber, Sabyasachi Chakrabortty , Lothar Veith, Markus Mezger, Lutz Kirste, Theo Fuchs, Thomas Diemant, Tanja Weil, R. Jürgen Behm, Klaus Thonke and Ferdinand Scholz, Impact of Surface Chemistry and Doping Concentrations on gan/ga = n量子井的生物功能化,传感器,2020。 https://doi.org/10.3390/s20154179 113。 Soumyajyoti Biswas,David F. Castellanos和Michael Zaiser,使用机器学习的蠕变失败时间的预测,Scientific Reports,2020年,刚刚接受。 Luo,Yige,Liping Yao,Wen Gu,Chengyi Xiao,Hailiang Liao,Mahesh Kumar Ravva,Yanfei Wang等。 “对Aza-Octacenes特性的卤代取代基的影响。”有机电子学,2020年。 https://doi.org/10.1016/j.orgel.2020.105895。 111。https://doi.org/10.1016/j.isatra.2020.08.019。Sankar,Velayudham,Murugavel Kathiresan,Bitragunta Sivakumar和Subramaniyan Mannathan。“芳香胺的锌催化N-烷基化:一种无配体方法。”高级合成与催化,2020年。https://doi.org/10.1002/adsc.202000499。 k Hemant Kumar Reddy,Ashish K Luhach,Buddhadeb Pradhan,Jatindra Kumar Dash,Diptendu Sinha Roy,一种用于上下文感知的智能城市,可持续性城市和社会的遗传算法,用于节能雾气层资源,2020年。 https://doi.org/10.1016/j.scs.2020.102428 114。 Nilanjon Naskar, Martin F. Schneidereit, Florian Huber, Sabyasachi Chakrabortty , Lothar Veith, Markus Mezger, Lutz Kirste, Theo Fuchs, Thomas Diemant, Tanja Weil, R. Jürgen Behm, Klaus Thonke and Ferdinand Scholz, Impact of Surface Chemistry and Doping Concentrations on gan/ga = n量子井的生物功能化,传感器,2020。 https://doi.org/10.3390/s20154179 113。 Soumyajyoti Biswas,David F. Castellanos和Michael Zaiser,使用机器学习的蠕变失败时间的预测,Scientific Reports,2020年,刚刚接受。 Luo,Yige,Liping Yao,Wen Gu,Chengyi Xiao,Hailiang Liao,Mahesh Kumar Ravva,Yanfei Wang等。 “对Aza-Octacenes特性的卤代取代基的影响。”有机电子学,2020年。 https://doi.org/10.1016/j.orgel.2020.105895。 111。https://doi.org/10.1002/adsc.202000499。k Hemant Kumar Reddy,Ashish K Luhach,Buddhadeb Pradhan,Jatindra Kumar Dash,Diptendu Sinha Roy,一种用于上下文感知的智能城市,可持续性城市和社会的遗传算法,用于节能雾气层资源,2020年。https://doi.org/10.1016/j.scs.2020.102428 114。Nilanjon Naskar, Martin F. Schneidereit, Florian Huber, Sabyasachi Chakrabortty , Lothar Veith, Markus Mezger, Lutz Kirste, Theo Fuchs, Thomas Diemant, Tanja Weil, R. Jürgen Behm, Klaus Thonke and Ferdinand Scholz, Impact of Surface Chemistry and Doping Concentrations on gan/ga = n量子井的生物功能化,传感器,2020。https://doi.org/10.3390/s20154179 113。 Soumyajyoti Biswas,David F. Castellanos和Michael Zaiser,使用机器学习的蠕变失败时间的预测,Scientific Reports,2020年,刚刚接受。 Luo,Yige,Liping Yao,Wen Gu,Chengyi Xiao,Hailiang Liao,Mahesh Kumar Ravva,Yanfei Wang等。 “对Aza-Octacenes特性的卤代取代基的影响。”有机电子学,2020年。 https://doi.org/10.1016/j.orgel.2020.105895。 111。https://doi.org/10.3390/s20154179 113。Soumyajyoti Biswas,David F. Castellanos和Michael Zaiser,使用机器学习的蠕变失败时间的预测,Scientific Reports,2020年,刚刚接受。Luo,Yige,Liping Yao,Wen Gu,Chengyi Xiao,Hailiang Liao,Mahesh Kumar Ravva,Yanfei Wang等。“对Aza-Octacenes特性的卤代取代基的影响。”有机电子学,2020年。https://doi.org/10.1016/j.orgel.2020.105895。 111。https://doi.org/10.1016/j.orgel.2020.105895。111。Siarhei Zhuk,Terence Kin Shun Wong,MilošPetrović,Emmanuel Kymakis,Shreyash Sudhakar Hadke,Stener Lie,Lydia Helena Wong,Prashant Sonar,Sathek Dey,Sathek Dey,Sathek Krishnamurty,Goutam Kumar。 Dalapati,溶液使用超薄CUO中间层处理纯硫化物CZCTS太阳能电池,效率为10.8%,太阳RRL,2020。https://doi.org/10.1002/solr.1229333
先进的深度学习ML Christlein博士2+2 5.0 X Eng高级设计和编程SA教授Dirk Riehle博士4 5.0 X GER高级机械化推理,Coq Sa Pd Dr.Habil。Tadeusz Litak 4 7.5 X Ger/Eng高级编程技术SAHaraldKöstler博士4 7.5 X Eng Advance Advanced Ml教授ML教授Vasileios Belagiannis博士2+2?x ENG Algebra of Programming Sym Prof. Dr. L. Schröder, Prof. Dr. Stefan Milius 4 7.5 x GER/ENG Algebraic and Logical Aspects of Automata Theory Sym Prof. Dr. Stefan Milius, Dr. Henning Urbat 4 7.5 x GER/ENG Approximate Computing SA Prof. Dr. Keszöcze, Prof. Dr. Teich 2+2 5.0 x GER/ENG Artificial Intelligence I Sym Prof. Dr. Kohlhase 4+2 7.5 x ENG Artificial Intelligence II ML Prof. Dr. Kohlhase 4+2 7.5 x ENG Biomedical Signal Analysis ML Dr. Felix Kluge, Prof. Eskofier 2+2 5.0 x ENG Cognitive Neuroscience for AI Developers SA Dr. Patrick Krauss 2+2 5.0 x ENG Computational Photography and Capture SA Prof. Dr. Tim Weyrich 2+2 5.0 x GER/ENG Computational Visual Perception SA Prof. Dr. Andreas Kist, Marc Stamminger, Prof. Egger 4+2 7.5 x ENG Computer Vision ML Ph Ronak Kosti, Dr. Vincent Christlein 2+2 5.0 x GER Deep Learning ML Prof. Dr. Andreas Maier 2+2 5.0 x ENG Description Logic and Formal Ontologies Sym Prof. Dr. Schröder 4 7.5 x GER/ENG Formal Verification Sym PD Dr. Tadeusz Litak, Paul Wild 4 7.5 x GER/ENG Human Computer Interaction SA Prof. Dr. Eskofier 3+1 5.0 x ENG Informationsvisualisierung SA Dr. Roberto Grosso 2+2 5.0 x GER Knowledge Representation fir Mathematical Theories Sym Prof. Dr. Kohlhase/PD Dr. Rabe 2 2.5 x ENG Kommunikation und parallele Prozesse Sym Prof. Dr. Lutz Schröder 4 7.5 ???基于逻辑的自然语言语义Sym教授Kohlhase博士,PD Florian Rabe博士2 2.5 x GER/ENG机器学习时间序列豪华ML教授Eskofier教授,Oliver Amft教授,Ch。mutschler 2+2+2 7.5 x Eng机器学习时间序列ML Eskofier教授,Oliver Amft教授,Ch。mutschler 2+2 5.0 X ENG的高级数据工程方法SA教授Dirk Riehle博士2 5.0 X Eng Modallogik Sym Daniel Hausmann博士4 7.5?GER Multimedia Security ML Dr. Riess 2+2 5.0 x ENG Music Processing Analysis ML Prof. Dr. Meinard Müller 2+2 5.0 x ENG Nonclassical Logics in Computer Science Sym Prof. Dr. L. Schröder, PD Dr. Tadeusz Litak 4 7.5 x GER/ENG Pattern Analysis ML Dr. Christian Riess 3+1 5.0 x GER Pattern Recognition ML Prof. Dr. Andreas Maier 3+1+2 5.0 X ENG编程语言实用语义Sym PD Tadeusz Litak博士4 7.5 x GER/ENG
1. Henning, K. 实施工业 4.0 战略计划的建议;美国国家科学与工程院:华盛顿特区,美国,2013 年。 2. Nguyen, H.;Tran, K.;Zeng, X.;Koehl, L.;Castagliola, P.;Bruniaux, P. 智能工厂中的工业物联网、大数据和人工智能:调查与展望。ISSAT 国际商业、金融和工业数据科学会议论文集,越南岘港,2019 年 7 月 5 日至 9 日。 3. He, Z.;Tran, KP;Thomassey, S.;Zeng, X.;Xu, J.;Yi, C. 基于深度强化学习的多标准决策支持系统,用于优化纺织化学工艺。计算机。 Ind. 2021 ,125 ,103373。4. He, Z.;Tran, KP;Thomassey, S.;Zeng, X.;Xu, J.;Yi, C. 使用基于深度 Q 网络的多智能体强化学习对纺织制造过程进行多目标优化。J. Manuf. Syst. 2021 ,即将出版。5. He, Z.;Tran, KP;Thomassey, S.;Zeng, X.;Xu, J.;Changhai, Y. 使用极限学习机、支持向量回归和随机森林对活性染色棉的褪色臭氧化进行建模。文本。Res. J. 2020 ,90 ,896–908。6. Huong, TT;Bac, TP;Long, DM;Luong, TD;Dan, NM;Thang, BD; Tran, KP 使用工业控制系统中的异常检测检测网络攻击:一种联邦学习方法。Comput. Ind. 2021,132,103509。7. Frank, AG;Dalenogare, LS;Ayala, NF 工业 4.0 技术:制造公司的实施模式。Int. J. Prod. Econ. 2019,210,15–26。8. Alcácer, V.;Cruz-Machado, V. 扫描工业 4.0:制造系统技术文献综述。Eng. Sci. Technol. Int. J. 2019,22,899–919。9. Song, Z.;Sun, Y.;Wan, J.;Liang, P. 面向服务制造信息物理系统的数据质量管理。Comput. Electr. Eng. 2017 ,64 ,34–44。10. 徐勇;孙勇;万建;刘晓玲;宋哲。工业大数据故障诊断:分类、评论和应用。IEEE Access 2017 ,5 ,17368–17380。11. 黄PM;李CH 使用深度学习和传感器融合估计刀具磨损和表面粗糙度发展。传感器 2021 ,21 ,5338,doi:10.3390/s21165338。12. 金TH;金HR;Cho, YJ 通过深度学习进行产品检测方法概述。传感器 2021 ,21 ,5039,doi:10.3390/s21155039。13. 黄YC; Chen, YH 使用长短期记忆预测牙科空气涡轮手机在铣削过程中的剩余使用寿命和退化评估。传感器 2021,21,4978,doi:10.3390/s21154978。14. Kim, J.;Ko, J.;Choi, H.;Kim, H. 通过跳跃连接卷积自动编码器使用深度学习检测印刷电路板缺陷。传感器 2021,21,4968,doi:10.3390/s21154968。15. Xia, K.;Saidy, C.;Kirkpatrick, M.;Anumbe, N.;Sheth, A.;Harik, R. 走向机器视觉系统的语义集成以帮助理解制造事件。传感器 2021 , 21 , 4276,doi:10.3390/s21134276。16. Sharma, S.;Koehl, L.;Bruniaux, P.;Zeng, X.;Wang, Z. 开发智能数据驱动系统以推荐个性化时装设计解决方案。传感器 2021,21,4239,doi:10.3390/s21124239。17. Yang, S.;Xu, Z.;Wang, J. 通过深度强化学习实现动态排列流水车间的智能调度决策。传感器 2021,21,1019,doi:10.3390/s21031019。