糖尿病是一种重要的慢性内分泌/代谢疾病,可能导致许多威胁生命的后果。根据研究,肠道菌群与糖尿病的发展密切相关,使其成为糖尿病治疗的可行靶标。肠道菌群会影响肠道屏障功能,生物体免疫力,从而影响葡萄糖代谢和脂质代谢。According to research, a disruption in the intestinal microbiota causes a decrease in short-chain fatty acids (SCFAs), alters the metabolism of bile acids (BAs), branched-chain amino acids (BCAAs), lipopolysaccharide (LPS), and endotoxin secretion, resulting in insulin resistance, chronic in fl ammation, and the progression to type 2糖尿病(T2DM)。Astragali radix是一种与食物相同的药物,该草药已被广泛研究用于治疗糖尿病,并在近年来取得了令人鼓舞的结果。多糖,皂苷,avonoids和其他成分很重要。中,星形镜在保护胰腺和肝脏的细胞完整性方面发挥了作用,可以减轻胰岛素抵抗,并降低血糖和甘油三酸酯(TC)水平;阿斯托拉瓜多糖(AP)对糖尿病的主要影响是胰岛素抵抗,鼓励胰岛细胞增殖以及胰岛B细胞死亡的抑制。已知Astagali radix avonoids可以增强免疫力,抗炎性,调节葡萄糖代谢并控制糖尿病的进展。这项研究总结了关于阿斯特拉加利辐射的最新研究及其在2型糖尿病中通过调节肠道微生物群的治疗中的研究。
摘要:Helichrysum Arenarium(L。)Moench亚种。aucheri是属于芦丝的草本多年生草药。该植物具有抗菌,抗病毒,抗炎,抗真菌性,抗增殖性,抗氧化剂和抗自由基的生物学活性。在这项研究中,甲醇和乙醇提取物的抗菌和抗氧化活性是甲烷亚种的空中部分。Aucheri进行了研究。确定抗菌活性致病性微生物大肠杆菌,铜绿假单胞菌,克雷伯氏菌肺炎,金黄色葡萄球菌,巨芽孢杆菌,甲状腺芽孢杆菌,念珠菌,念珠菌glabrata,candida albicans和Trichophyton sp。用总抗氧化剂值(TAS),总氧化剂值(TOS)和2.2-二苯基-1-苯基-Picrylhydrazil(DPPH)自由基清除能力确定抗氧化活性。在获得的结果中,确定甲醇提取物仅针对白色念珠菌具有抗菌作用(9.3 mm)。发现,乙醇提取物以不同的速率(8.8-20.4 mm)与金黄色葡萄球菌,Megaterium,C。glabrata,C。blabrata,C。blabrata,C。albicans和Trichophyton sp。甲醇提取物的TAS值为3.00 mmol,乙醇提取物的TAS值为3.15 mmol。将同一物种的甲醇提取物的TOS值计算为6.81μmol,乙醇提取物的TOS值计算为12.64μmol。发现Goldengrass提取物提取物的DPPH自由基清除作用取决于浓度。关键词:Helichrysum arenarium subsp。Aucheri,Goldengrass,抗菌,抗氧化剂。
摘要麻黄是麻黄科家族的属,在温带地区,例如中亚和欧洲。在各种麻黄种中,莫黄(Ephedra Herb)源自Ephedra Sinica Stapf的空中部分,Ephedra Equisetina Bunge和Ephedra Intermedia Schrenk&C.A.Mey。 Ma Huang contains various ephedra alkaloids, including ( )-ephedrine, (+)-pseudoephedrine, ( )-norephedrine, (+)- norpseudoephedrine, ( )-methylephedrine, and (+)-methylpseudoephedrine, which are found naturally as single enantiomers, although they can be prepared作为种族。 尽管在韩国禁止在食品中使用ma huang,但可以进口含有马黄的产品,因此有必要开发合适的分析技术来检测食品中的ma huang。 在此,我们报告了用于检测包含马黄产品的麻黄碱的分析方法的开发。 通过固相提取样品纯化后,使用超表现液相色谱 - 三极杆质谱法(UPLC-MS/MS)进行定量分析。 此外,使用HPLC-DAD成功分离了对映异构体。 我们成功地分析了各种食物样本,在这些食物样本中,在促定性和定量上确定了麻黄碱,并分离了对映异构体。 预计这些方法可能有助于防止含有Ma Huang的非法产品的分布。 关键字ma huang,ephedra生物碱,uplc-ms/ms,hplc-dad,对映体分离Mey。Ma Huang contains various ephedra alkaloids, including ( )-ephedrine, (+)-pseudoephedrine, ( )-norephedrine, (+)- norpseudoephedrine, ( )-methylephedrine, and (+)-methylpseudoephedrine, which are found naturally as single enantiomers, although they can be prepared作为种族。尽管在韩国禁止在食品中使用ma huang,但可以进口含有马黄的产品,因此有必要开发合适的分析技术来检测食品中的ma huang。在此,我们报告了用于检测包含马黄产品的麻黄碱的分析方法的开发。通过固相提取样品纯化后,使用超表现液相色谱 - 三极杆质谱法(UPLC-MS/MS)进行定量分析。此外,使用HPLC-DAD成功分离了对映异构体。我们成功地分析了各种食物样本,在这些食物样本中,在促定性和定量上确定了麻黄碱,并分离了对映异构体。预计这些方法可能有助于防止含有Ma Huang的非法产品的分布。关键字ma huang,ephedra生物碱,uplc-ms/ms,hplc-dad,对映体分离
作者:Herb Shivers,博士,PE,CSP,NASA 马歇尔太空飞行中心安全与任务保障局副局长。NASA 正在开发太空发射系统——一种先进的重型运载火箭,它将为人类探索地球轨道以外的空间提供全新的能力。太空发射系统将提供一种安全、经济且可持续的手段,让我们能够超越目前的极限,从独特的太空视角探索新事物。首次开发飞行或任务计划于 2017 年底完成。太空发射系统 (SLS) 将用于将猎户座多用途载人飞船以及重要的货物、设备和科学实验运往地球轨道和更远的目的地。此外,SLS 将作为商业和国际合作伙伴向国际空间站提供运输服务的后备。SLS 火箭将结合航天飞机计划和星座计划的技术投资,以利用成熟的硬件和尖端的工具和制造技术,从而大大降低开发和运营成本。该火箭将使用液氢和液氧推进系统,该系统将包括航天飞机计划的 RS-25D/E 发动机(用于核心级)和 J-2X 发动机(用于上级)。SLS 还将使用固体火箭助推器进行初始开发飞行,而后续助推器将根据性能要求和可负担性考虑进行竞争。SLS 的初始升力为 70 公吨。这超过 154,000 磅,即 77 吨,大约相当于 40 辆运动型多用途车的重量。升力将可升级到 130 公吨——超过 286,000 磅,即 143 吨——足以升起 75 辆 SUV。这种架构使 NASA 能够利用现有能力并降低开发成本,方法是将液氢和液氧用于核心级和上级。此外,这种架构提供了一种模块化运载火箭,可以使用
凋亡是一种高度调节的细胞死亡形式,可能是革命癌症治疗的关键。由于癌症的发病率高和死亡率,带来了重大的全球健康挑战,因此必须探索非常规治疗方法。中药以其整体原则而闻名,为治疗胃癌(GC)带来了有趣的可能性。值得注意的是,在传统的中国草药症状症状中发现的重要组成部分是Baicalin在胃癌治疗中表现出了有希望的临床潜力。要阐明这种有趣的现象,一种多学科的方法是一种多学科的方法,将系统生物学,生物学研究结合结合在一起。主要目的是揭开巴西阿氏蛋白促进胃癌细胞凋亡的能力的复杂工作。这项综合研究的发现揭示了一个涉及NF-κB-NLRP3的基本信号轴,该信号轴在巴西氏蛋白诱导的胃癌细胞中起着关键作用。随着调查的进行,很明显,黄胶蛋白具有逆转NLRP3抑制剂MCC950钠的作用的显着能力。令人兴奋的是,巴西林诱导细胞凋亡的疗效表现出了可见的剂量依赖性关系,展示了其作为有价值的治疗剂的潜力。这些发现的复杂性质强调了Baaicalein,NF-κB-κB-NLRP3信号传播和气体癌症细胞的复杂相互作用。随着科学界深入研究凋亡及其治疗意义的世界,Baicalein在与胃癌作斗争中改变了游戏的潜力变得越来越明显。
摘要:心力衰竭(HF)是心肌梗塞后最常见的并发症,与心室重塑密切相关。AconInum Carmichaelii Debx。是一种传统的中含中含的中国草药,对HF和相关心脏疾病具有治疗作用。然而,其对HF相关心脏疾病的影响和机制尚不清楚。在本研究中,提取烤的carmichaelii debx的水。(WETA)使用UPLC-Q/TOF-MS验证。通过超声心动图和应变分析评估HF大鼠的心脏功能,并通过CK-MB,CTNT和CTNI的血清水平测量心肌损伤。通过2,3,5-三苯基四唑(TTC)染色,苏木精和曙红(H&E)染色以及Masson的三色染色,评估了心脏组织的病理变化。此外,通过RT-QPCR,Western blot和免疫荧光检测到与血管重塑相关的炎症相关基因和蛋白质和成分的水平。WETA显着抑制了超声心动图参数的变化以及心脏体重的增加,心脏梗塞的大小,肌肌症,肌表皮症,水肿和炎性细胞的效果,心脏组织中的胶原蛋白沉积,也减轻了CK-MB,CTNT和CTNI的血清级别的高度。Additionally, WETA suppressed the expressions of inflammatory genes, including IL-1 β , IL-6, and TNF- α and vascular injury-related genes, such as VCAM1, ICAM1, ANP, BNP, and MHC in heart tissues of ISO-induced HF rats, which were further confirmed by Western blotting and immunofluorescence.总而言之,通过抑制ISO处理的大鼠的炎症反应和异常的血管重塑,赋予了WETA的心肌保护作用。
• 全球亚热带和温带地区干旱期的频率和长度正在增加。表观遗传对水分胁迫的反应可能是植物抵御这些难以预测的挑战的关键。实验性 DNA 去甲基化与应激因子的应用相结合是揭示表观遗传学对植物应激反应贡献的适当策略。• 在温室中,我们分析了用 5-氮杂胞苷对种子进行去甲基化和/或反复受水胁迫后,一年生地中海草本植物 Erodium cicutarium 成年植株叶片胞嘧啶甲基化的变化。我们使用亚硫酸盐 RADseq (BsRADseq) 和新报道的 E. cicutarium 参考基因组,以 2 9 2 因子设计表征甲基化变化,控制植物相关性。 • 从长期来看,仅用 5-氮杂胞苷处理会导致单个胞嘧啶的低甲基化和高甲基化,在 CG 环境中会出现显著的低甲基化。在对照条件下,干旱导致除 CHH 环境中所有环境中的甲基化减少。相反,经历反复水胁迫并用 5-氮杂胞苷处理的植物的基因组使 DNA 甲基化水平增加约 5%。• 种子去甲基化和反复干旱在整体和特定环境中的胞嘧啶甲基化方面产生了高度显著的相互作用。大多数甲基化变化发生在基因区域周围和转座因子内。这些与基因相关的差异甲基化区域的注释包括几个在应激反应中具有潜在作用的基因(例如 PAL、CDKC 和 ABCF),证实了表观遗传在分子水平上应对应激的贡献。
摘要简介/目标。草药一直是整个人类历史上至关重要的可再生医学来源,因为大部分全球人口仍然取决于它们的健康益处。草药补充剂的日益普及引起了人们对与其他药物原位的总体安全性和潜在互动的明显关注。目的是刺激对草药 - 药物相互作用的未来研究,以及了解这种相互作用的后果的相互作用机制。方法。该审查是通过使用Google Scholar,Science Direct,Mendeley,Scopus和PubMed的数据库进行系统搜索进行的。用英语编写的出版物被使用。据报道,许多草药产品与已知的东正教药物相互作用。抑制诱导机制触发链反应,通常导致药物生物利用度,毒性或不良副作用降低。据报道,一些草药植物构成结合了CYP2C9,CYP2C19,CYP2E1和CYP3A1,以及许多其他暂时或不可逆地结合了CYP3A1。结论。这项研究是通过重申常规和定期向医生和患者提供固有危险(例如降低疗效和与Herb-Drug相互作用(HDI)相关的毒性增加)的不完善性结束的结论。草药使用者应定期建议适当使用草药补充剂,以避免在共同给药期间或联合疗法中发生不良药物相互作用的风险。在HDI中可以观察到协同作用和拮抗作用,因此需要进一步的临床前和临床经验研究来强调HDI的机制和程度。关键字:草药 - 药物相互作用,酶,药代动力学互动,传统医学,细胞色素P450通讯作者:Mary O. Ologe电子邮件:FunMiologe@yahoo.com
摘要 芫荽 ( Coriandrum sativum L.) 是一种重要的草本植物,广泛用于全球烹饪、药用和芳香应用。芫荽改良的关键进展包括提高产量、抗逆性和植物化学物质的产生。生物技术方法在应对抗病性、环境压力和质量改进等挑战方面的潜力已被充分了解。CRISPR/Cas9 等基因改造技术已实现精确的基因编辑,以实现抗病性、除草剂耐受性和改善营养吸收等特性。此外,生物技术工具可实现精确的基因编辑,允许在不引入外来基因的情况下进行有针对性的修改。这种方法确保了转基因芫荽品种的安全性和法规遵从性,解决了与消费者接受度和环境影响相关的问题。此外,组织培养协议的进步促进了优良芫荽品种的快速繁殖,规避了与种子发芽和保持遗传纯度相关的问题。采用标记辅助选择 (MAS) 和基因组选择的分子育种策略加速了具有理想农艺性状的高产芫荽品种的开发。包括基因组学、转录组学和代谢组学在内的“组学”方法在阐明芫荽重要性状的遗传基础方面提供了宝贵的见解,了解了芫荽发育、应激反应和次生代谢物生物合成的分子机制。本综述概述了芫荽研究的最新生物技术进展,重点关注基因工程、组织培养、代谢组学和分子育种等领域,旨在提高芫荽的产量、质量和抗逆性。关键词:芫荽、生物技术、基因工程、
摘要Nicotiana tabacum是一种非食品草药,有可能被用作生物基因生成药物,疫苗或有价值的小型代谢物。为了实现这些目标,可以改善预先设计的基因组修改的遗传工具是必不可少的。CRISPR/CAS核酸酶的发展允许诱导特定于特定的双链断裂,以增强同源重组介导的基因靶向(GT)。但是,对于包括烟草在内的许多农作物而言,GT的效率仍然是一个具有挑战性的障碍。最近,对几种植物物种的研究表明,通过用其他CRISPR/CAS基核酸酶代替SPCAS9,GT效率可能会大大增强。因此,我们测试了SACAS9以及温度不敏感的LBCAS12A(TTLBCAS12A)靶向烟草基因。同时,我们还优化了农杆菌介导的烟草转化和组织培养的方案。以这种方式,当使用TTLBCAS12A时,我们可以将GT效率提高到最高三分之一的接种子叶,而TTLBCAS12A的表现非常优于SACAS9。此外,我们可以证明GT反应的转化道长度可以长606 bp,在大多数情况下,它的长度超过250 bp。我们获得了多个可遗传的GT事件,主要是杂合的,但也是双重的GT事件,有些事件没有T-DNA集成。因此,我们不仅能够第一次获得基于CRISPR/CAS的可遗传性GT事件,而且第一次获得了TTLBCAS12A,而且我们的结果也可能是烟草中的基因编辑和GT的优越选择。