我们回顾了从理论上处理宇称时间 (PT) 对称非厄米量子多体系统的方法。它们被实现为具有 PT 对称性并与环境相容的耦合的开放量子系统。PT 对称非厄米量子系统表现出各种迷人的特性,使它们在一般的开放系统中脱颖而出。后者的研究在量子理论中有着悠久的历史。这些研究基于组合系统-储层装置的厄米性,由原子、分子和光学物理学以及凝聚态物理学界开发。数学物理学界对 PT 对称非厄米系统的兴趣导致了新的视角和 PT 对称和双正交量子力学优雅数学形式主义的发展,这些形式主义不涉及环境。在数学物理研究中,重点主要放在哈密顿量的显着光谱特性和相应单粒子本征态的特征上。尽管哈密顿量不是厄米量的,但它们可以显示所有特征值都是实数的参数区域。然而,为了研究凝聚态物理中出现的量子多体现象并与实验取得联系,人们需要研究可观测量和关联函数的期望值。此外,人们必须研究统计集合而不仅仅是特征态。凝聚态界部分人士采用 PT 对称和双正交量子力学的概念,导致该方法论处于争议之中。对于一些基本问题,例如,什么是适当的可观测量,如何计算期望值,什么是充分的平衡统计集合及其相应的密度矩阵,人们并没有达成共识。随着工程和控制开放量子多体系统的技术进步,现在是时候将厄米量与 PT 对称和双正交观点相协调了。我们全面回顾了不同的方法,包括伪厄米性的过度思想。为了激发我们在这里宣传的厄米观点,我们主要关注辅助方法。它允许将非厄米系统嵌入到更大的厄米系统中。与其他技术(例如主方程)相比,它不依赖于任何近似值。我们讨论了 PT 对称和双正交量子力学的特性。在这些中,被认为是可观测量的东西取决于哈密顿量或选定的(双正交)基。此外,至关重要的是,被称为“期望值”的东西缺乏直接的概率解释,而被视为正则密度矩阵的东西是非平稳和非厄米的。此外,时间演化的非幺正性隐藏在形式主义中。我们选取了几个模型哈密顿量,到目前为止,这些模型要么是从厄米角度研究的,要么是从 PT 对称和双正交角度研究的,并在各自的替代框架内研究它们。这包括一个简单的两级单粒子问题,但也包括显示量子临界行为的多体晶格模型。比较这两种计算的结果,可以发现厄米方法虽然在某些方面很笨拙,但总能得出物理上合理的结果。在极少数情况下,如果可以与实验数据进行比较,它们还会一致。相比之下,数学上优雅的 PT 对称和双正交方法得出的结果在一定程度上难以物理解释。因此,我们得出结论,厄米方法应该是
考虑通过使用扩大的量子系统实现的非热系统,我们确定了从量子信息的角度来确定非热传感器敏感性的基本限制。我们证明,由于有关参数的量子信息的不变性,因此非弱点传感器在敏感性的性能方面并不优于其Hermitian对应物(直接与参数)。通过审查使用完整量子系统实施的两个具体的非热感应提案,我们证明了这些传感器的敏感性与我们的预测一致。我们的理论提供了一个综合且与模型的框架,以理解非速度量子传感器的基本限制,并在非炎症物理学和量子计量学之间建立了桥梁。
我们展示了三种类型的变换,它们在临界状态下建立了厄米和非厄米量子系统之间的联系,可以用共形场论 (CFT) 来描述。对于同时保留能量和纠缠谱的变换,从纠缠熵的对数缩放中获得的相应中心电荷对于厄米和非厄米系统都是相同的。第二种变换虽然保留了能量谱,但不保留纠缠谱。这导致两种类型的系统具有不同的纠缠熵缩放,并导致不同的中心电荷。我们使用应用于自由费米子情况的膨胀方法来展示这种变换。通过这种方法,我们证明了中心电荷为c = −4的非厄米系统可以映射到中心电荷为c = 2的厄米系统。最后,我们研究了参数为φ →− 1 /φ的斐波那契模型中的伽罗瓦共轭,其中变换既不保持能量谱也不保持纠缠谱。我们从纠缠熵的标度特性证明了斐波那契模型及其伽罗瓦共轭与三临界Ising模型/三态Potts模型和具有负中心电荷的Lee-Yang模型相关联。
在非铁晶准晶体中的非相互作用颗粒在复杂的能量平面中显示出定位 - 偏置和光谱相变,可以通过点隙拓扑来表征。在这里,我们研究了在非铁族准晶体中两个相互作用颗粒的光谱和动力学特征,该颗粒在不稳定的正弦电位中用有效的哈伯德模型与复杂的相位描述,并在没有任何遗传学的情况下揭示了一些有趣的效果。由于粒子相互作用引入的相关跳跃的有效减小,doublon状态,即结合的粒子状态,与单粒子状态相比,光谱和定位 - 偏置转变的阈值要低得多,导致迁移率边缘的出现。值得注意的是,由于Doubleons显示出更长的寿命,因此最初放置在远处的两个粒子倾向于束束并粘在一起,在长期的进化中形成了Doubleon状态,这种现象可以将其称为非Hermitian粒子堆。
摘要:糖尿病是利比里亚越来越多的公共卫生问题,估计有2.1%的人口患有该疾病。利比里亚糖尿病的挑战是巨大的。糖尿病给个人及其家人施加巨大的社会经济压力,并承受着已经过度紧张的医疗保健系统,但仍从14年内战的破坏性影响中恢复过来。尽管正在进行重建利比里亚的医疗保健系统的努力,但患有糖尿病的人会面临巨大的挑战,可以解决社会,经济和医疗保健资源来管理其疾病。目的:这项批判性诠释学研究的目的是探索利比里亚患有糖尿病的感觉。方法:通过有目的的抽样,从利比里亚蒙罗维亚的一家公共资助的医院招募了10名糖尿病成年人。使用光电图方法收集了数据,其中参与者拍摄了他们的日常糖尿病经历。结果:我们确定了三个主题,回答了利比里亚生活的问题:糖尿病生活意味着生活在1)饮食不安全感,2)试图访问没有构建以应对糖尿病的卫生保健系统,而3)使用信仰来应对和寄养希望。结论:在利比里亚,糖尿病患者的经历不足,表明知识的差距。这项研究的结果通过对糖尿病对个人和家庭的影响进行更清晰的了解来解决文献中的这一差距。我们就可以改善利比里亚糖尿病患者的健康成果和生活质量的干预措施向地方政府和政策制定者提供了切实的建议。
Black Soldier fly ( Hermetia illucens ) larval (BSFL) frass was examined for its nutrient nitro- gen, phosphate and potassium (N:P 2 0 5 :K 2 O), phytohormone and biogenic amine content, its plant growth promoting activity, and screened to test the hypothesis that bacteria charac- teristic of the genus Enterococcus (present in the biome of decaying餐饮废物和幼虫的肠被BSFL排出。FRASS植物促进活性的促进活性是通过比较经过弗拉斯处理的土壤中的冬小麦浆果(Triticum aestivum)与未经处理(对照)土壤的生长的。n:p 2 0 5:k 2 o干物质平均水平,FRASS的生物胺和植物激素含量分别通过标准土壤分析,HPLC和HPLC/GC-MS方法确定。所有的浓度都太低,无法解释其植物生长促进活性。添加到土壤中的FRASS诱导了对照植物的空中质量增加11%,并且芽的长度增加了。在BEA(胆汁蛋白 - 阿戈尔)板上生长的肠球菌的许多菌落在直接从幼虫中检测到的frass板,这证实了可行的肠球菌从幼虫肠道中传递到其菌丝中的假设。由于以前已经将许多根瘤菌(包括肠球菌)确定为幼虫肠生物群的一部分在赋予其植物生长促进活性方面发挥作用。
光子非厄米系统中的拓扑效应近期引发了一系列非凡的发现,包括非互易激光、拓扑绝缘体激光器和拓扑超材料等等。这些效应虽然在非厄米系统中实现,但都源于其厄米分量。本文,我们通过实验证明了由二维激光阵列中的虚规范场引起的拓扑趋肤效应和边界敏感性,这与任何厄米拓扑效应有着根本的不同,并且是开放系统所固有的。通过选择性地和非对称地向系统中注入增益,我们在芯片上合成了一个虚规范场,它可以根据需要灵活地重新配置。我们不仅证明了非厄米拓扑特征在非线性非平衡系统中保持不变,而且还证明了可以利用它们来实现强度变形的持久相位锁定。我们的工作为具有强大可扩展性的动态可重构片上相干系统奠定了基础,对于构建具有任意强度分布的高亮度源具有吸引力。
基于模分复用的 FSO 系统中 Hermite-Gaussian 和 Laguerre-Gaussian 模式的分析 ANUSHTHA NIMAVAT 1、AMAN SAH 1、TUSHAR POKHRA 1、ABHISHEK TRIPATHI 2,*、SHILPI GUPTA 1,* 1 电子工程系,萨达尔瓦拉巴伊国家理工学院,苏拉特,古吉拉特邦,印度 2 计算机科学与工程系,Kalasalingam 研究与教育学院,Srivilliputhur,泰米尔纳德邦,印度 自由空间光学 (FSO) 是一种非视距 (NLoS) 技术,可提供无处不在的数字服务,尤其是在频率分配非常紧张且实际上无法容纳所有用户的地区。在本研究中,我们设计了一个模型,该模型传输四个独立模式(HG 00、HG 01、LG 00 和 LG 10),携带伪随机比特序列,这些序列复用到单个自由空间信道中,并在各种衰减和链路长度值的主题下进行研究。我们发现 HG 系列的性能优于 LG 系列,在 600 米链路范围内 18 dB/km 的衰减下,误码率 (BER) 降低了约 7.7%,Q 因子提高了 4%。(2022 年 11 月 2 日收到;2023 年 4 月 7 日接受)关键词:光无线、Hermite-Gaussian、Laguerre-Gaussian、模分复用
一个人可以使用描述性命名法(例如“量子波方程”)或同名命名法(对于同一示例,“schrödinger方程”)。后者更好地融入了讲故事的方法,尽管必须始终在某个地方提供描述!在这里,为了方便“热力学III几何”特刊的读者,我们欣赏了有关各种复杂系统的“浆果阶段”分析的非常大的文献。这不是特刊的编辑摘要,而是试图将与特殊问题相关的技术领域连接起来,目前几乎完全断开了连接。特别是,一组工人解决了“定量的几何热力学”,因此[1],另一个工人解决了光学系统[2],而另一批则解决了快速/慢速动态系统[3]。令人惊讶的是,这些都是正式相关的,在这里,我们希望给出某种连贯的概述,尤其是这些领域,尤其是这些关系。在这个通用场中进行了多少工作是非凡的,因此此“审查”只是指示。它强调并不详尽。如Gu等人。[4]指出,“当经典或量子系统经历其参数空间缓慢变化控制的环状进化时,它获得了一种拓扑相位因子,称为几何或浆果阶段,这揭示了量子力学中的量规结构”。“ Hannay的角度”是此额外量子相[5]的经典对应物,从旋转顶部的优雅处理中可以清楚地看出[6]。[8],也有助于总结了该领域)。量子几何阶段和经典的Hannay角度确实密切相关,这是通过最近的工作确认的断言[7]。aharonov – bohm效应(由零幅度的字段引起的波函数相移的奇怪现象)到目前为止已经进行了充分的研究。甚至被认为是对重力场的物质波的适当时机的相移(参见Oversstreet等人。这种相移被称为“浆果”,1984 [2]或“几何阶段”之后的“浆果阶段”(使用Berry首选的描述性命名法,他指出了包括Pancharatnam在内的许多杰出贡献者,包括Pancharatnam [9])。Berry最初对绝热系统进行了处理,但后来意识到对非绝热情况的概括是“直接的” [10]。这也用摩尔[11]优雅地解释了Floquet定理(固态物理学家称为Bloch定理)。摩尔指出,“浆果阶段”也被称为“ aharonov – anandan阶段”,因为他们的治疗实际上是去除绝热限制的第一个[12],尽管似乎(非绝热)Aharonov – Aharonov – Anandan阶段可能与(Adibiabatic)
摘要:鉴于可食用昆虫部门的工业生产的新颖性,研究主要集中于黑人士兵幼虫(BSFL)的动态性能,以响应不同的基板和饲养条件作为基础,以优化产量和质量。最近,研究已开始更多地关注幼虫消化系统及其底物的相关微生物,以及操纵这些群落对昆虫性能的组成的影响,作为微生物组工程的一种形式。在这里,我们介绍了有关在BSFL饲养过程中使用微生物的现有文献的概述,以优化该昆虫的生产力。这些研究具有可变的结果,并提供了对这种差异的潜在解释,以激发未来的研究,这可能会导致BSFL中微生物组工程的成功率更好。