本教科书基于我在哥德堡大学和瑞典哥德堡的Chalmers技术大学提供的课程人工神经网络的讲义。当我准备讲座时,我的主要来源是Hertz,Krogh和Palmer [1]对神经计算理论的介绍。其他来源是神经网络:Haykin [2]的综合基础,霍纳的讲座注释[3],Heidelberg,Goodfellow,Bengio&Courville的深度学习[4],在线书籍神经网络和Nielsen的深度学习[5]。I thank Martin ˇ Cejka for typesetting the first version of my hand-written lecture notes, Erik Werner and Hampus Linander for their help in preparing Chapter 8, Kris- tian Gustafsson for his detailed feedback on Chapter 11, Nihat Ay for his comments on Section 4.5, and Mats Granath for discussions about autoencoders.I would also like to thank Juan Diego Arango, Oleksandr Balabanov, Anshuman Dubey, Johan Fries, Phillip Gräfensteiner, Navid Mousavi, Marina Rafajlovic, Jan Schiffeler, Ludvig Storm, and Arvid Wenzel Wartenberg for implementing algorithms described in this book.许多数字基于其结果。Oleksandr Balabanov,Anshuman Dubey,Jan Meibohm,尤其是Johan Fries和Marina Rafajlovic提出了考试问题,这些问题成为了本书的练习。最后,我要感谢StellanÖstlund的鼓励和批评。最后但并非最不重要的一点是,许多同事和学生(过去和现在)指出了错误的印刷和错误,并提出了改进。我感谢他们。目前的版本不包含练习(剑桥大学出版社拥有的版权)。完整的书可从剑桥大学出版社获得。
AEC 陆军环境中心 ASTM 美国材料与试验协会 ATI 分析技术公司 bbl 桶(相当于 42 加仑) bgs 地下水位测量 EPA-DTSC 加利福尼亚州环境保护署、有毒物质控制部 CAS 化学文摘社 cm 厘米 CPT 锥形穿透仪测试 CSC 计算机科学公司 CSCT 场地特性技术联盟 DFM 柴油 船舶 DHS 加利福尼亚州卫生服务部 DoD 国防部 DOE 能源部 DOT 运输部 DQO 数据质量目标 EMMC 环境监测管理委员会 EPA 美国环境保护署 ETI 环境技术倡议 ETV 环境技术验证 ft 英尺 FVD 荧光与深度 GC/FID 气相色谱/火焰离子化检测器 HNTS 碳氢化合物国家试验场 HSA 空心钻头 Hz 赫兹 IDW 调查衍生废物 IR 红外线 IRP 安装恢复计划ITVR 创新技术验证报告 LIF 激光诱导荧光 LOD 检测限 m 米 � m 微米 mg/kg 毫克每千克 mg/L 毫克每升 m/min 米每分钟
计算机架构 这是计算机硬件的内部逻辑结构和组织。它说明了计算机的各个不同部分如何组合在一起并有效地协同工作 冯·诺依曼架构 冯·诺依曼架构解释了所有设备在处理信息时如何遵循一般规则。所有数据和程序都存储在计算机内存中,并以二进制数字(0 和 1)的形式存储。 输入 — 数据通过输入设备(如键盘、鼠标、麦克风等)输入到设备中 CPU — 数据由 CPU 通过控制单元和 ALU 处理 内存单元 — 数据在 CPU 和计算机内存之间传输 输出 — 最后,经过处理后,数据通过输出设备(如显示器、扬声器、打印机等)输出给用户 输入设备 我们用来将信息发送到计算机的设备,例如鼠标、键盘、麦克风等 输出设备 我们用来将信息从计算机中发送出去的设备,例如显示器、扬声器、打印机等 CPU(中央处理单元) 这是计算机的大脑。它使用提取、解码、执行周期 Hz (赫兹) 来处理用户提供的所有指令。这是我们测量 CPU 速度的标准。1Hz = 每秒可执行 1 条指令。CPU 的常见速度现在以兆赫 (MHz) 或千兆赫 (Ghz) 为单位
°C 摄氏度 °F 华氏度 μPa 微帕斯卡 AHT 锚固拖船 AIS 自动识别系统申请人 弗吉尼亚电力公司,以 Dominion Energy Virginia 的名义开展业务 BIA 生物重要区域 BOEM 海洋能源管理局 CFR 联邦法规 CPT 锥形渗透试验 CTV 船员转移船 dB 分贝 DMA 动态管理区 Dominion Dominion Energy Virginia DP 动态定位 DPS 不同种群细分 DSPT 直接可操纵管道隧道施工 DSTBM 直接可操纵隧道掘进机 ECM 环境合规监测器 ESA 濒危物种法案 FR 联邦公报 ft 英尺 HDD 水平定向钻井 HF 高频 HRG 高分辨率地球物理 Hz 赫兹 IR 红外线 km 千米 km/h 千米每小时 kHz 千赫兹 租赁区 租赁编号 OCS-A 0483 LF 低频 LOA 授权书 m 米 MF 中频 MMPA 海洋哺乳动物保护法 NGDC 国家地球物理数据中心 nm海里 NOAA 国家海洋和大气管理局 NOAA 渔业局 NOAA 国家海洋渔业局 OCS 外大陆架 PAM 被动声学监测 PBR 潜在生物去除
ASFV Abbreviated Sound Field Verification BOEM Bureau of Ocean Energy Management CFR Code of Federal Regulations CMMP Construction Mitigation & Monitoring Plan COP Coastal Virginia Offshore Wind Project Construction and Operations Plan CR Dominion Energy Client Representative CTV Crew transfer vessel CVOW-C The Dominion Coastal Virginia Offshore Wind Commercial Project CZ Clearance Zone dB decibel DBBC Double big bubble curtain DEME DEME Offshore US LLC., part of the DEME Group DMA Dynamic Management Area Dominion Energy Virginia Electric and Power Company, doing business as Dominion Energy Virginia DVO Dedicated Visual Observer ECC Dominion Energy Environmental Compliance Coordinator ECM Environmental Compliance Monitor ESA Endangered Species Act FOU A Monopile foundation FR Federal Register ft feet GARFO NMFS Greater Atlantic Regional Fisheries Office HFC High Frequency Cetaceans HSD Hydro声音阻尼器HZ Hertz Hz Hz骚扰区IR IR IS ITA附带授权IV安装船KM/H公里/小时/小时KHz KHz KHz KHz KILOHEHTZ租赁区租赁号OCS-A 0483 LFC低频固定体LOA授权字母LPSO铅受保护物种观察者M米MCC MCC监测和协调中心MCPG运动补偿桩抓毛机MF MF MF MF中期MFC MFC中频率中期频率
ACC 空战司令部 AFB 空军基地 AFI 空军指令 AFPD 空军政策指令 AICUZ 空中设施兼容使用区 空军 美国空军 APZ 事故潜在区 ATC 空中交通管制 BASH 鸟类/野生动物飞机撞击危险 CATM 战斗武器训练与维护 CDNL C 加权昼夜平均噪声级 CFR 联邦法规 CZ 净区 dB 分贝 DNL 昼夜平均声级 DoD 国防部 EMI 电磁干扰 FAA 联邦航空管理局 FAR 楼层面积比 GCA 地面控制进近 HAFZ 飞机飞行区危害 HRPDC 汉普顿路规划区委员会 Hz 赫兹 IONMP 装置运行噪声管理计划 JBLE 兰利-尤斯蒂斯联合基地 JLUS 联合土地利用研究 LaRC 兰利研究中心 LFA 兰利飞行进近 Lpk 峰值声压级 MSL 平均海平面 NASA 美国国家航空航天局 NLR 噪音水平降低 NVGs 夜视镜 PA 公共事务RPA 遥控飞机 SLUCM 标准土地使用编码手册 UAS 无人机系统 USC 美国代码 USDA 美国农业部 VFR 目视飞行规则
特性 天线端口的峰值功率输出 - AN/UPX-37 和 AN/UPX-41(C)、AN/UPX-45(C)、AN/UPX-50(C) 双输出 63 dBm 单组合输出 66 dBm,不包括 AN/UPX-50(C) 可调节 -9 dB,步长为 1 dB 天线端口的峰值功率输出 - AN/UPX-42(C) 双输出 65 dBm 可调节 -6 dB 占空比 最大 2.0% 接收器中心频率 1090 ±0.5 兆赫 接收器带宽 -3 dB,8 兆赫标称 灵敏度 -84 dBm 最小(Mark XII) -90 dBm 最小(Mark XIIA) 在天线端口测量到 90% 的解码 提取器仪表范围 >300 海里 电源输入配置 115 或 230 VAC,<1100 VA, 440 赫兹 尺寸 14.75 英寸宽、10.56 英寸高、18 英寸深 重量 最大 85 磅 环境高度 工作 高达 12,000 英尺 非工作 高达 50,000 英尺 温度 工作 -28 摄氏度至 +65 摄氏度 非工作 -40 摄氏度至 +75 摄氏度 冲击 MIL-S-901D 轻型设备 盐雾 48 小时暴露 湿度 90% 相对 EMC MIL-STD-461D 性能参数 容量 每次扫描 1,000 个目标 100 个光束内目标 可靠性(海军掩蔽) 基本系统 >4,000 小时 AN/UPX-41(C)、42(C)、45(C) 和 50(C) >5,000 小时 AN/UPX-37 可维护性 <20 分钟 MTTR
一维次波长光栅(也称为Metratings)由于具有多功能应用电位的相对简单的设计配置而引起了极大的关注。最近,这些元元素在Terahertz频域中扮演着至关重要的角色,以实现几种引人入胜的效果。已经证明,可以通过仔细设计光栅几何形状以及对材料特性进行仔细调整,可以通过仔细设计光栅几何形状来修改这些元元的特征。光栅设计中的这种变化导致了设备性能的增强。此外,设计合适的Metratings能够令人兴奋的强烈的Evanescent订单,可以在ul敏感的传感,光学诱捕,非线性等中利用。基于平面地理版本(易于制造)以及各种公用事业所提供的巨大潜力,我们审查了本文中与Terahertz Metagratings有关的代表性作品。因此,我们已经讨论了基于群体的抗反射涂层和使用简化模型方法建模的THZ区域中运行的极化光束分离器。此外,我们已经讨论了利用傅立叶转化的Terahertz光谱(FTTS)技术激发的元流中的evanevancent波的实验探测。ftts是一种独特的技术,因为它具有同时检测传播和非传播顺序的能力。接下来,我们讨论了Metagratings在传感痕量分析物中的应用。考虑到这些一维人工次波长结构中的不断增长,我们认为,我们的文章将对愿意开始在Terahertz亚波长度上工作的搜索者有用。
2020 年 11 月 12 日召集:主席 Charles C. Deegan 于上午 10:00 召集特别会议。主席 Deegan 宣布,由于当前的公共卫生紧急情况,特别会议将在 Microsoft Teams 上远程举行。他表示,特别会议正在录制并向公众直播,录音副本将在委员会网站上公布。特别会议的目的是让委员会审议和投票表决可再生能源法规。执行董事 Kate Charbonneau 点名确认出席的委员会成员。出席的委员会成员: Tim Adams,乔治王子县 Curtis Beulah,哈福德县 Gail Blazer,伍斯特县 - 沿海海湾(海洋城市) Carolyn Cummins,伍斯特县 - 沿海海湾 Jeffrey Ferguson,东海岸全体成员 Anita Grant,西海岸全体成员 Sue Greer,查尔斯县 Deborah Herr Cornwell,规划部 Michael Hewitt,圣玛丽县 Matt Johnston,安妮阿伦德尔县 Charles Laird,萨默塞特县 Pat Mahoney,卡尔弗特县 Gary Mangum,安妮女王县 David Marks,巴尔的摩县 Catherine McCall,自然资源部 Michael McCarthy,塔尔博特县 Ewing McDowell,商务部 Marianne Navarro,巴尔的摩市 Julie Oberg,农业部 Steven Parker,塞西尔县 Tammy Roberson,环境部 Donald Sutton,肯特县 Caroline Varney-Alvarado,住房和社区发展部 未出席的委员会成员出席人员:桑迪·赫兹(Sandy Hertz),交通部詹姆斯·刘易斯(James Lewis),卡罗琳县詹妮弗·梅里特(Jennifer Merritt),伍斯特县 - 切萨皮克湾
在我的演讲中,我想根据《逻辑哲学论》区分两种从基本命题中构造真值函数的方法。第一种方法是“操作方法”,包括连续应用 N 运算符,这是 TLP 6 中给出的“命题的一般形式”的核心。但是,还有第二种方法,可以称为“组合方法”,也出现在《逻辑哲学论》中,但不太为人所知。所有真值函数都可以通过两步程序实现,该程序使用特定的逻辑哲学论真值论证、真值可能性和真值条件架构。对于给定数量的 n 个基本命题(作为真值论证),第一步将形成这 n 个基本命题及其否定的所有可能的连接。例如n= 2,其中 p 和 q 是基本数,这给出了 4 种可能的组合 p.q、~p.q、p.~q 和 ~p.~q(真值可能性)。在第二步中,现在构造所有可能的子集,这些可能性通过析取组合起来。这样就可以构造所有真值函数,这种方法等同于通过 N 运算符构造。从数学的角度来看,这个过程等同于 n 个生成器的“自由布尔代数”,生成 2 𝑛 所谓的代数“原子”,最后生成 22 𝑛 代数元素。这个自由布尔代数反过来同构于命题逻辑的 Lindenbaum-Tarski 代数。在我的演讲中,我想通过讨论这种结构的属性来解释(有限命题逻辑部分)Tractarian Logic,并展示一些与赫兹配置空间(和玻尔兹曼相空间)的联系,这些联系可用于更好地理解维特根斯坦的逻辑空间。最后,我想表明,基于这种观点,可以给出基本命题的明示例子。
