课程注释原子吸收光谱法(AAS)。该方法的基本面。使用火焰雾化。设备。辐射源。火焰和燃烧器。分析,灵敏度,主要问题和干扰的表现。AAS使用电热雾化(石墨室)。分析的性能。石墨室内蒸发机制。应用AAS用于分析不同类型的样品的分析。电感耦合等离子体光学发射光谱法(ICP-OES)。ICP-OES,主要特征和应用领域的基本面。原子/离子排放,定性和定量分析的起源。电感耦合等离子体作为激发源。设备,光谱仪类型,分析性能,主要优势和缺点。干扰。样品制备。其他激励来源。电感耦合等离子体质谱法(ICP-MS)。ICP-MS,设备和光谱仪类型的基本面。血浆作为离子源的作用。ICP-MS的灵敏度。主要优势和缺点,干扰。 分析的性能和对不同类型样本的应用。 原子荧光光谱法(AFS)。 AFS的基本原理,主要特征。 设备,主要优势和缺点。 分子光谱。 光谱法的基本原理,主要。 基本概念。 分子的电子结构。ICP-MS的灵敏度。主要优势和缺点,干扰。分析的性能和对不同类型样本的应用。原子荧光光谱法(AFS)。AFS的基本原理,主要特征。设备,主要优势和缺点。分子光谱。光谱法的基本原理,主要。基本概念。分子的电子结构。分子的电子结构。能量水平,能量转变和相应的光谱电子吸收光谱。有机化合物的紫外光谱,其结构,从光谱获得的信息。溶剂,结合和结构变化对吸收带的强度和位置的影响。紫外光谱。吸收带,其性质。实际应用。定量分析。振动光谱。方法的原理。分子键的振荡,其数学描述。红外光谱。近,远,主要的红外辐射区。对红外光谱的解释。影响吸收峰的位置,宽度,强度的因素。样品制备,设备和记录技术。拉曼光谱法。该方法的本质,是研究的对象。从拉曼光谱获得的信息。表面增强的拉曼光谱。质谱法。技术和原理。获得分子离子的方法。 分裂规则和机制,来自质谱的信息。 质谱与色谱法的组合。 不同分析方法的组合。 阅读清单1。 J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.获得分子离子的方法。分裂规则和机制,来自质谱的信息。质谱与色谱法的组合。不同分析方法的组合。阅读清单1。J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.J. Nolte,ICP发射光谱法;实用指南,威利,2003年。2。L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.L. Ebdon,E.H。 Evans,A。Fisher,S.J。Hill,《分析原子光谱概论》,Wiley,1998年。3。4。S.M.S.M.J. A.C. Broekaert,带有火焰和等离子体的分析光谱,Wiley,2002。NELMS,ICP质谱手册,Blackwell Publishing,2005年。5。L.H.J. Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。 6。 H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。 7。 R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998L.H.J.Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。6。H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。7。R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998R. M. Silverstein,F.X。Webster,有机化合物的光谱鉴定,Willey,1997 8。P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。9。D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。R.Kellner,J.M.Mermet,M。Otto,H.H。widmer,分析化学,1998
一个结构良好的供应链,校准以满足需求,在九个国家已经达成的分销协议,一个“现场”团队,为医院提供一流的支持以及计划于2025年计划的Aeson®成果的重要科学出版物,将支持这一势头。因此,我们非常适合在接下来的几个月中继续并加速我们的发展,并逐渐将Aeson®作为治疗晚期心力衰竭的基准。” 2024年的出色商业业绩具有42aeson®植入物和销售额的2.5,该公司的2024年销售额为700万欧元,对应于销售42aeson®Hesse,其中包括17台在商业设置中(在德国,意大利,西班牙和波兰)和25种在法国的Eficas临床研究。此性能代表Aeson®植入物和销售量的增长2.5倍。Carmat的活动全年表现出强大的动力,每月平均植入物为3.5,在一年中的过去四个月中升至近5个。在2024年底之前的EFICAS研究中,持续强大的招聘势头,这项研究中有近70%的计划招募已经完成。Carmat预计完成EFICAS入学(即共有52名患者)在2025年上半年,为在2025年底发布其结果3铺平了道路。提醒人们,EFICAS研究是Carmat有史以来最大的研究。EFICAS研究目前正在法国5的10家医院进行,其中2家已经进行了7种植入物,表明对医疗保健专业人员的治疗非常满意。是促进Aeson®(“基于证据的医学”)的更广泛的商业部署并获得法国的报销的关键;为了确保该公司预计在2027 - 2028年预计的美国销售Aeson®的授权(“ PMA”)4。在2024年底在Aeson®植入物中受过培训的医院增加数量和活动,在Aeson®植入物中接受了60家医院的培训,包括:
2 Fraunhofer IZM Berlin Gustav-Meyer-Allee 25, 13355 Berlin Germany Email: martin.schneider-ramelow@izm.fraunhofer.de 摘要 本文介绍了德语国家和欧洲国家广泛使用的引线键合标准 DVS-2811。该标准于 1996 年推出,现在包含所有当前使用的键合方法的定义和限值,包括其他所有官方标准中都没有的重/粗引线键合连接的剪切测试。特别是考虑到电池键合用户数量的不断增长,指定适当的粗引线测试限值具有重要意义。除了概述当前状态之外,还展望了未来 1-2 年的进一步更新。 关键词 引线键合、拉力测试、剪切测试、质量、标准、测试 I. 简介 标准和细间距引线键合技术继续经历小幅发展,材料更加精炼、几何尺寸更小,可靠性要求也不断变化。当前可用的引线键合标准无法回答在测试此类先进引线键合触点时出现的问题。需要在这一领域开展活动。向新技术领域的发展在重引线键合中更为明显。一个例子是,用于生产电池模块的大面积键合机的需求不断增加。此外,新功能已集成到现有的键合机机器平台中,包括激光键合技术(F&K Delvotec)和智能焊接技术(Hesse Mechatronics、Kulicke & Soffa)。目前没有跟上这种快速发展的一个方面是过程控制和质量检查的标准化。现有标准(如 MIL-883、ASTM F1269 或 JEDEC 22B116B)不包含任何测试粗线(直径 > 100 µm)的指导。偏离此几何形状(如重带或超声波焊接成型部件或接线片)也没有得到解决。这给用户、机器供应商和最终客户带来了挑战。测试规范、工具属性、极限值等的定义必须单独讨论并达成一致。25 年来,DVS 公告 2811 一直
* Sven Ingmar Andersson,瑞典隆德大学和圣拉尔斯医院 * Paola Avanzini,意大利帕维亚大学 * B. Diane Barnette,美国马里兰州阿伯丁试验场人体工程学实验室 B. Biehl,德意志联邦共和国曼海姆大学 Waiter F. Bischof,瑞士伯尔尼大学 * Didier Bouis,德意志联邦共和国卡尔斯鲁厄弗劳恩霍夫研究所 Henk J. Breimer、Kath.荷兰蒂尔堡应用科学学院 * Francis Breitenbach,美国马里兰州阿伯丁试验场人体工程学实验室 * Angelo Buizza,意大利帕维亚大学 * Carlo Cabiati,意大利帕维亚大学 Amos S. Cohen,瑞士苏黎世联邦理工学院 * Peter Coles,瑞士日内瓦大学 * Trevor Crawford,英国杜伦大学 Reinhard Daugs,德意志联邦共和国柏林自由大学 Patrick Davous,法国巴黎圣安妮医院中心 Ernst G. De Langen,德意志联邦共和国慕尼黑大学 * Robert W. Ditchburn,英国雷丁大学 * J. Fassl,德国柏林科学学院 * John M. Findlay,英国杜伦大学 Hans-Uell Fisch,瑞士伯尔尼大学 Hardi Fischer,瑞士苏黎世联邦理工学院 * Dennis F. Fisher,英国人体工程学实验室阿伯丁试验场,医学博士,英国阿尔赛,弗洛雷斯,莱顿大学和马克斯普朗克研究所,荷兰奈梅亨 Peter Fries,瑞典隆德大学 * Alistair G. Gale,英国诺丁汉皇后医疗中心 * Niels Galley,德国科隆大学 * Marina Groner,瑞士伯尔尼大学和巴塞尔大学 * Rudolf Groner,瑞士伯尔尼大学 Annelles Heinisch,维尔茨堡大学,德意志联邦共和国 * Dieter Heller,拜罗伊特大学,德意志联邦共和国 Friederich W. Hesse,莱茵威斯特法伦工业大学亚琛分校,德意志联邦共和国 Rene Hirsig,瑞士联邦理工学院,瑞士苏黎世
社会对太空资产的依赖已经增长到如今每个现代国家基础设施的一部分的程度。借助太空技术提供的服务(例如全球导航卫星系统)对于从电信到交通再到银行等各个领域的顺利运营至关重要(Hesse and Hornung,2015),而且这个清单还可以继续。甚至普通民众也已经习惯使用卫星服务,例如卫星电视或手机上的卫星导航。因此,对我们的太空资产的任何威胁对社会来说都是非常重要的问题。截至 2020 年 2 月,太空中大约有 5,500 颗卫星,但实际上只有大约 2,300 颗在运行,这意味着大约有 3,200 颗报废卫星仍在地球轨道上运行,还有火箭的上面级和整流罩以及因解体、爆炸、碰撞、退化或其他异常事件而产生的各种较小物体,这些事件导致碎片的产生。这些物体统称为空间垃圾,其尺寸分布范围从大型完整物体(例如,尺寸大于 10 米且重量为几吨的火箭或大型卫星的部件)到毫米大小的碎片,如油漆鳞片或冷却剂凝固液滴。2020 年初的估计显示,有 34,000 个物体大于 10 厘米,900,000 个物体介于 > 1 至 10 厘米之间,以及惊人的 1.28 亿个物体介于 > 1 毫米至 1 厘米之间。鉴于其高速度和随之而来的高动能,即使是小碎片也会对正在运行的卫星构成重大威胁,因为它们可能会撞击卫星,造成灾难性的后果并导致潜在的关键服务丧失。同时,较大物体之间的高能碰撞会产生真正的爆炸,从而产生数千个碎片。这些碎片反过来会与其他轨道物体相撞,引发连锁反应和滚雪球效应,可能导致整个轨道无法使用。这种极端情况(凯斯勒综合征)最初由凯斯勒在 70 年代研究(凯斯勒和库尔帕莱,1978 年),距离现实并不遥远,因为已经发生了几次碰撞。也许最著名的是俄罗斯军用通信卫星 Cosmos 2,251 与铱星星座卫星之间的碰撞(王,2010 年),这导致碎片数量大幅增加。随着目前正在开发的卫星应用越来越多,需要越来越多的卫星(例如,部署数百颗卫星组成的星座以提供全球连接或万维网),空间垃圾问题变得越来越重要(Virgili 等人,2016 年)。
德国天然气供应非常安全可靠。德意志联邦共和国根据欧洲议会和欧洲理事会 2017 年 10 月 25 日颁布的关于保障天然气供应安全措施和废除第 994/2010 号条例 (EU) 2017/1938 条例第 8 条、第 10 条和附件 VII 的要求,以及在做好危机准备的背景下,制定了《天然气应急计划》。第 2017/1938 号条例 (EU) 加强了欧盟内部天然气市场,并确保在发生供应危机时欧盟成员国采取统一的做法。此外,本应急计划还包含德国根据 2022 年 8 月 5 日关于协调天然气需求减少措施的 (EU) 2022/1369 条例第 8 (2) 条实施的减少供应的自愿措施,该措施将于 2024 年 3 月 31 日到期。欧盟委员会于 2020 年 2 月 18 日就 2019 年 10 月 17 日通知的天然气应急计划提出的意见已被考虑在内。根据能源工业法 (EnWG) 第 54a (1) 条,联邦经济和气候行动部 (BMWK) 负责制定本天然气应急计划。天然气应急计划是在 Bundesnetzagentur für Elektrizität, Gas, Telekommu- nikation, Post und Eisenbahnen(联邦电力、天然气、电信、邮政和铁路网络局/BNetzA)的积极参与下制定的。根据 1938/2017 号条例 (EUI) 第 10(2)条的规定,每四年定期更新一次天然气应急计划。关于本次应急计划的更新,根据 2017/1938 号条例 (EU) 第 8(6)条的规定,咨询了所有九个直接相连或通过瑞士相连的欧盟成员国(即奥地利、比利时、捷克、丹麦、法国、意大利、卢森堡、荷兰和波兰)的主管部门,以及德国所属的八个风险组的其他 15 个成员(即保加利亚、克罗地亚、爱沙尼亚、芬兰、希腊、匈牙利、爱尔兰、拉脱维亚、立陶宛、葡萄牙、罗马尼亚、瑞典、斯洛伐克、斯洛文尼亚和西班牙)以及瑞士和英国。磋商以英文版本进行,截止日期为 2023 年 8 月 25 日星期五。在德国,紧急计划已与以下机构进行了磋商: - 联邦政府各部委,截止日期为 2023 年 7 月 28 日; - 16 个州(巴登-符腾堡州、巴伐利亚州、柏林、勃兰登堡州、不来梅州、汉堡州、黑森州、下萨克森州、梅克伦堡-前波美拉尼亚州、北莱茵-威斯特法伦州、莱茵兰-普法尔茨州、萨尔州、萨克森州、萨克森州-安哈尔特州、石勒苏益格-荷尔斯泰因州和图林根州)主管当局,截止日期为 2023 年 7 月 14 日; - 专业和行业协会,截止日期为 2023 年 7 月 14 日
喀山联邦大学汉语教学现状分析及若干方面的方法论建议 Leisan Mirzieva、Elvira Daminova、Veronika Tarasova 鞑靼语和土耳其语民间文学基金中交际行为的民族刻板印象 Gulshat N. Galimova 1、Alfiya Sh. Yusupova 1、Guzel A. Nabiullina 1、Mustafa Oner 2 高等学校英语教学需要差异化方法:一项社会学研究 Tatiana Igorevna Monastyrskaya 1、Tatiana Borisovna Ganicheva、Gleb Vyacheslavovich Toropchin、Aleksandr Vladimirovich Katsura 中文网络语言的发展趋势 Svetlana Yu. Glushkova、Militsa K. Voronina Fidenae:在罗马和维伊之间 Liudmila M. Shmeleva、Kseniya A. Utkina、Anna V. Zorina 与家庭关系语义场相关的惯用表达的语法模式 Kamilya R. Ziganshina1、Zulfiia Kh. Fazlyeva1、Nadezhda O. Samarkina1、Mr. Charles Carlson2 赫尔曼·黑塞的小说“荒原狼”俄语译本中词汇语义场“智力”的建模 Irina V. Erofeeva1、Luiza I. Gimatova1、Ekaterina V. Sergeeva2 韩国文学中侦探小说的特点 Julia J. Valieva、Leyla A. Gaynullina、Alina I. Khuzina 鞑靼文学中的移民主题 Landysh R. Faezova1、Milyausha М. Khabutdinova1、Gulfia R. Gaynyllina1、Ainur Mashakova 2 鞑靼语词典:未来食物的名称和储存用具 Gulgena N. Khusnullina、Raushaniya S. Nurmuk
[1] Takahiro Arima、Tomoko Okuma 和 Tatsuya Dewa。从技术文档中提取材料信息以探索新应用。自然语言处理协会第 29 届年会论文集,第 512-515 页,2023 年。[2] Annemarie Friedrich、Heike Adel、Federico Tomazic、Johannes Hingerl、Renou Benteau、Anika Marusczyk 和 Lukas Lange。SOFC-exp 语料库和神经方法在材料科学领域的信息提取。在计算语言学协会第 58 届年会论文集,第 1255-1268 页。ACL,2020 年。[3] Shu Huang 和 Jacqueline M. Cole。使用飞行数据提取器自动生成的电池材料数据库。科学数据,第 5 卷7,第1号,第2052-4463页,2020年。[4] Fabrizio Gilardi、Meysam Alizadeh和Maël Kubli。Chatgpt在文本注释任务中的表现优于众包工作者。美国国家科学院院刊,第120卷,第30期,第e2305016120页,2023年。[5] Tom Brown、Benjamin Mann、Nick Ryder、Melanie Subbiah、Jared D Kaplan、Prafulla Dhariwal、Arvind Neelakantan、Pranav Shyam、Girish Sastry、Amanda Askell、Sandhini Agarwal、Ariel Herbert-Voss、Gretchen Krueger、Tom Henighan、Rewon Child、Aditya Ramesh、Daniel Ziegler、 Jeffrey Wu、Clemens Winter、Chris Hesse、Mark Chen、Eric Sigler、Mateusz Litwin、Scott Gray、Benjamin Chess、Jack Clark、Christopher Berner、Sam McCandlish、Alec Radford、Ilya Sutskevser 和 Dario Amodei。语言模型是少样本学习器。载于《神经信息处理系统进展》,第 33 卷,第 1877-1901 页。Curran Associates, Inc.,2020 年。[6] Md Tahmid Rahman Laskar、M Saiful Bari、Mizanur Rahman、Md Amran Hossen Bhuiyan、Shafiq Joty 和 Jimmy Huang。在基准数据集上对 ChatGPT 进行系统研究和全面评估。载于《计算语言学协会研究结果:ACL 2023》,第 1877-1901 页。 431–469。ACL,2023 年 7 月。[7] Bart lomiej Koptyra、Anh Ngo、Lukasz Radli´nski 和 Jan Koco´n。Clarin-emo:使用人类注释和 chatgpt 训练情绪识别模型。在国际计算科学会议上,第 365–379 页。Springer,2023 年。[8] Taiki Watanabe、Akihiro Tamura、Takashi Ninomiya、Takuya Makino 和 Tomoya Iwakura。使用化合物释义进行化学命名实体识别的多任务学习。在 2019 年自然语言处理经验方法会议和第 9 届国际自然语言处理联合会议 (EMNLP-IJCNLP) 的论文集上,第 6244–6249 页。ACL,2019 年。[9] Amalie Trewartha、Nicholas Walker、Haoyan Huo、Sanghoon Lee、Kevin Cruse、John Dagdelen、Alexander Dunn、Kristin A. Persson、Gerbrand Ceder 和 Anubhav Jain。量化领域特定预训练在材料科学命名实体识别任务中的优势。Patterns,第 3 卷,第 4 期,第 100488 页,2022 年。[10] Gupta Tanishq、Zaki Mohd 和 NM Krishnan。Matscibert:用于文本挖掘的材料领域语言模型
迁移流离失所惠特尼铝数分钟出租车特立尼达彩虹罗伯托感动观察观众责怪莱茵约翰偷窃封闭的国家增加免疫自由式wwe反对回合注射苔藓菲利克斯赫尔曼消耗致命场景位置dos静态。伍斯特iTunes穆罕默德温布尔登das超过温泉穆斯林假宣传半径供应商望远镜进步世仇范围弗格森酋长社会学弗莱明砂岩风暴莫妮卡横向下沉更难马车誓言起重机尖峰事故林吉特白天广泛子公司卡尔教授布雷迪准将恐慌造船厂规范台北精制先知选美奉献纳斯卡连续性雪松滑雪德雷克水下交付坐标受体反射杰弗里安德里亚听众修道院。牌匾结合偏见温斯顿纸浆碰撞马克卡牢固固定声明 at&t 地平线德黑兰向上隧道斗争形状库马尔清洁谈判 oz 接受西藏哈萨克斯坦成功贝克商店匹配@二进制米德兰兹贝德福德废弃特蕾西玻利维亚停止多彩半决赛加州大学洛杉矶分校红人新娘洪水发行随后农民排名过剩埋葬财政大气动机迷你学术麦克斯韦捷克斯洛伐克米奇托莱多反馈意识形态运作传奇。精确君士坦丁灰烬核探索游艇解决仙女集体动乱警报天文学少数民族种族灭绝人质加尔各答选择性半球神双边码头生态蜂蜜银行绝对烧毁吉隆坡现象