表 1. 一抗和二抗。抗体 宿主 用途 参考 公司 APC Ms 1:300 OP80 Calbiochem BLBP Rb 1:500 32423 Abcam DCX Rb 1:500 4604 细胞信号传导 GFAP Rb 1:1000 31745 Dako KI67 Rb 1:300 AB16667 Abcam MASH1/ ASCL-1 Rb 1:250 Ab74065 Abcam NEUN Ms 1:500 MAB377 Millipore NESTIN Ms 1:100 +citrato 4760 细胞信号传导 NG2 Rb 1:100 AB5320 Millipore OLIG 2 Rb 1:500 AB9610 Millipore PDGFR Α Rb 1:300 +MetOH 31745 细胞信号传导 S100 Β Rb 1:500 AB41548 Abcam SOX 2 Rb 1:200 2748 细胞信号传导 SOX 10 Rb 1:200 69661 细胞信号传导 TUJ 1 Ms 1:300 MAB1637 Millipore VIMENTIN Ms 1:200 V6389 Sigma-Aldrich Alexa Fluor 633 Gt α Rb Gt 1:1000 A-21070 Thermo Fisher Alexa Fluor 647 Gt α Ms Gt 1:1000 A-21236 Thermo Fisher Alexa Fluor 647 Gt α Rat Gt 1:1000 A-21247 Thermo Fisher Alexa Fluor 568 Gt α Rb Gt 1:1000 A-11011 Thermo Fisher Alexa Fluor 568 Gt α Ms Gt 1:1000 A-11004 Thermo Fisher Ms:小鼠,Rb:兔,Rt:大鼠,Gt:山羊。
1 宾夕法尼亚大学生物医学图像计算与分析中心,美国宾夕法尼亚州费城 19104 2 宾夕法尼亚大学放射学系,美国宾夕法尼亚州费城 19104 3 中国脑研究中心,北京 102206 4 宾夕法尼亚大学精神病学系,美国宾夕法尼亚州费城 19104 5 宾夕法尼亚大学 Penn/CHOP 寿命脑研究所,美国宾夕法尼亚州费城 19104 6 宾夕法尼亚大学神经病学系,美国宾夕法尼亚州费城 19104 7 宾夕法尼亚大学宾夕法尼亚成像与可视化统计中心,美国宾夕法尼亚州费城 19104 8 宾夕法尼亚大学生物统计学、流行病学和信息学系,美国宾夕法尼亚州费城 19104 9 宾夕法尼亚大学脑成像与刺激中心,美国宾夕法尼亚州费城 19104 10 宾夕法尼亚大学脑科学、转化、创新与调节中心宾夕法尼亚大学,美国宾夕法尼亚州费城 19104,美国 11 宾夕法尼亚大学抑郁和压力神经调节中心,美国宾夕法尼亚州费城 19104,美国 12 宾夕法尼亚大学神经科学、神经外科和生物工程系,美国宾夕法尼亚州费城 19104,美国 13 宾夕法尼亚大学宾夕法尼亚寿命信息学和神经影像中心,美国宾夕法尼亚州费城 19104,美国 *通讯作者:Yong.Fan@pennmedicine.upenn.edu
人类遗传疾病通常是由复合杂合性突变引起的,其中突变基因的每个等位基因都具有不同的遗传病变。但是,由于缺乏适当的模型,对此类突变的研究受到阻碍。在这里,我们描述了在强制性酶二聚体中的复合异伴变体的动力学模型,该变体在一个单体中包含一个突变,而第二个单体中的另一个突变中包含一个突变。该酶由人YarS2编码用于Mito-trosyl-tRNA合成酶(MT-Tyrrs),该酶是氨基化酪氨酸到MT-TRNA Tyr的氨基酰基。yarS2是MT-氨基酰基-TRNA合成酶的基因的成员,其中致病性突变的疾病严重程度与酶活性之间的相关性有限。我们在YARS2中识别一对与新生儿死亡有关的化合物杂合变体。我们表明,虽然每个突变在MT-TYRR的同型二聚体中导致氨基酰化的最小缺陷,但反式跨性别的两个突变会协同降低酶活性,从而更大。因此,这种动力学模型准确地概括了疾病的严重程度,强调了其研究YARS2突变的效用及其对具有复合杂合突变的其他疾病的泛化潜力。
绝对音高 (AP) 是指无需外界参考即可轻松识别乐音的能力,其神经基础尚不清楚。关键问题之一是这一现象背后是感知过程还是认知过程,因为感觉和高级大脑区域都与 AP 有关。为了整合对 AP 的感知和认知观点,我们在此研究了感觉和高级大脑区域对 AP 静息态网络的共同贡献。我们对大量 AP 音乐家 (n = 54) 和非 AP 音乐家 (n = 51) 的源级 EEG 进行了全面的功能网络分析,采用两种分析方法:首先,我们应用基于 ROI 的分析来检查听觉皮层和背外侧前额叶皮层 (DLPFC) 之间的连接,使用几种已建立的功能连接测量方法。这项分析重复了之前的一项研究,该研究报告了 AP 音乐家这两个区域之间的连接增强。其次,我们对相同的功能连接测量进行了基于全脑网络的分析,以更全面地了解可能涉及支持 AP 能力的大规模网络的大脑区域。在我们的样本中,基于 ROI 的分析没有提供听觉皮层和 DLPFC 之间 AP 特定连接增加的证据。全脑分析显示,AP 音乐家的三个网络连接增加,包括额叶、颞叶、皮层下和枕叶区域的节点。在感觉和大脑周边区域的高级区域都发现了网络的共同点。需要进一步研究来证实这些探索性结果。
三阴性乳腺癌 (TNBC) 是一种高度侵袭性的乳腺癌亚型,其特征是显著的分子异质性。目前,尚无有效的药物靶点和先进的人类疾病临床前模型。在这里,我们生成了一种独特的乳腺肿瘤小鼠模型(MMTV-R26 Met 小鼠),该模型由野生型 MET 受体表达的细微增加驱动。MMTV-R26 Met 小鼠会自发形成排他性 TNBC 肿瘤,重现患者对治疗的原发性耐药性。MMTV-R26 Met 肿瘤的蛋白质组学分析和机器学习方法表明,该模型忠实地重现了人类 TNBC 的肿瘤间异质性。进一步的信号网络分析突出了潜在的药物靶点,其中 WEE1 和 BCL-XL 的共同靶向协同杀死 TNBC 细胞并有效诱导肿瘤消退。从机制上看,BCL-XL 抑制加剧了 TNBC 细胞对 WEE1 功能的依赖,导致组蛋白 H3 和磷酸化 S 33 RPA32 上调、RRM2 下调、细胞周期扰动、有丝分裂灾难和细胞凋亡。本研究介绍了一种独特、强大的小鼠模型,用于研究 TNBC 的形成和进化、其异质性以及确定有效的治疗靶点。
1 斯特拉斯堡大学医院病理学系,67098 斯特拉斯堡,法国 2 UMR CNRS 7021,生物成像和病理学实验室,肿瘤信号和治疗靶点,药学院,67405 lllkirch,法国 3 斯特拉斯堡大学医院生物资源中心,67098 斯特拉斯堡,法国 4 斯特拉斯堡大学医院神经外科系,67098 斯特拉斯堡,法国 5 斯特拉斯堡大学医院神经内科系,67098 斯特拉斯堡,法国 6 斯特拉斯堡大学欧洲癌症研究所 (ICANS) 肿瘤学系,67200 斯特拉斯堡,法国 7 斯特拉斯堡大学 ICANS 放射治疗系, 67200 斯特拉斯堡,法国 8 斯特拉斯堡大学医院生物化学实验室肿瘤生物学平台,67098 斯特拉斯堡,法国 9 斯特拉斯堡大学医院放射科,67098 斯特拉斯堡,法国 10 斯特拉斯堡大学医院儿科肿瘤血液科,67098 斯特拉斯堡,法国 * 通讯地址:benoit.lhermitte@chru-strasbourg.fr(BL);natacha.entz-werle@chru-strasbourg.fr(NE-W.);电话:+33-3-88-12-84-41(BL);+33-3-88-12-83-96(NE-W.)
个人面临就业,收入和费用冲击的巨大风险,这些风险因不完整的金融市场而加剧。减轻这些风险的一种方法是通过无抵押的消费者贷款,但是获得这些贷款的机会不平等,利率差异很大。本文使用巴西的信用注册表(SCR)和雇主 - 雇员数据(RAIS)研究从2013年到2019年的利率差异。数据包括超过一百万个人以及有关贷款金额,期限,风险水平和利率的详细信息。关键发现表明利率上有明显的差异。个人贷款平均为146%A.A.,而工资贷款为28%,个人贷款利率表现出更大的分散。重要的是,即使在考虑风险概况之后,低收入借款人也会面临更高的利率。借款人的最低工资的1-2倍比最低工资的20倍的借款人高28-44个百分点。较小的贷款,非正式就业和性别也有助于更高的利率,而金融素养则适度降低借贷成本。工资贷款虽然更实惠,但许多人(包括非正式工人)仍然无法访问。相似的不等式模式在这个细分市场中持续存在,尽管幅度较小。为了应对这些挑战,该研究探讨了财务改造的潜力,以减少信贷市场的不平等现象。核心重点是旨在增加银行业竞争的改革如何使消费者受益于年轻和低收入个人。2013年的贷款可移植性改革被强调为一项促进福利的亲竞争政策的一个例子。该研究介绍了信用市场的校准生命周期模型,以阐明降低利率差异的潜在影响。的发现表明,消除或最小化这些差异可能会导致重要的福利提升,尤其是对于贫困和非正式工人而言。例如,消除这些差异(不切实际的情况)可能会增加福利,相当于每年消费的2.6%,而最贫穷的分数则更大。本文还评估了扩大获得工资贷款的潜在好处,该贷款更便宜,但很大程度上仅限于公共部门的工人和退休人员。尽管这种扩张具有积极影响,但其影响受到面临最高财务脆弱性的非正式工人的限制。因此,本文强调了金融改革在减少消费不平等和改善巴西的福利方面的潜在影响。洞察力为寻求解决信贷市场财务限制的政策制定者提供了挑战。政策制定者必须优先考虑提高银行业竞争,扩大低收入和非正式工人的负担得起的信贷的竞争,并投资金融教育以增强消费者权能的竞争。
探测纳米颗粒重新执行和聚合物纳米复合结构中的聚合物基质之间形成的区域的机械行为,称为“相间”,这是一个主要挑战,因为这些区域很难通过实验方法进行研究。在这里,我们准确地表征了聚合物纳米复合材料的异质机械行为,重点是通过纳米力学模拟和数值均质化技术的组合来关注聚合物/纳米芯的相互作用。最初,使用详细的原子分子动力学模拟研究了用二氧化硅纳米颗粒加固的玻璃状聚(乙烷)聚合物纳米复合材料的全局机械性能,均以1.9%和12.7%的硅胶体积分数。接下来,通过探测在平衡处纳米列列附近的聚合物原子的密度分布曲线来鉴定聚合物/二氧化硅相间的厚度。根据此厚度,将相互间隙细分以检查机械性能的位置依赖性变化。然后,使用连续力学和原子模拟,我们继续计算有效的Young模量和Poisson的聚合物/纳米颗粒间相的比例,作为距纳米颗粒距离的函数。在最后一步中,提出了一个反数值均质化模型,以根据比较标准与MD的数据进行比较标准来预测相间的机械性能。发现结果是可以接受的,这增加了准确有效地预测纳米结构材料中界面特性的可能性。
Subramanian S. Iyer (Subu) 是加州大学洛杉矶分校的杰出教授,担任电气工程系 Charles P. Reames 特聘教授,并兼任材料科学与工程系教授。2023-4 年,他被任命为美国商务部国家先进封装制造计划主任,在那里他为国家封装势在必行奠定了基础战略。他是异构集成和性能扩展中心 (UCLA CHIPS) 的创始主任。在此之前,他是 IBM 研究员。他的主要技术贡献是开发了世界上第一个 SiGe 基 HBT、Salicide、电保险丝、嵌入式 DRAM 和 45nm 技术节点,用于制造第一代真正低功耗的便携式设备以及第一个商用中介层和 3D 集成产品。自加入加州大学洛杉矶分校以来,他一直在探索新的封装范式和设备创新,这些创新可能实现晶圆级架构、内存模拟计算和医学工程应用。他是 IEEE、APS、iMAPS 和 NAI 的研究员,也是