摘要。三阴性乳腺癌(TNBC)是一种异性疾病,约占所有乳腺癌病例的15.0-20.0%。TNBC与早期复发和转移,强烈的侵入性和预后不良有关。化学疗法目前是TNBC治疗的主要手段,而病理完全反应的实现与长期良好预后密切相关。改善TNBC患者的长期预后是乳腺癌治疗的挑战,需要更多的临床证据来指导治疗策略的选择。当前的研究回顾了TNBC的常规治疗方式和新辅助化学疗法(NACT)的选择。还审查了优化NACT方案的研究进度,并强调了这种乳腺癌亚型的唯一性,以便为TNBC治疗提供参考和研究。
本工作采用金属有机化学气相沉积(MOCVD)技术分别在GaN模板和蓝宝石衬底上沉积β-Ga 2 O 3 薄膜,制备相应的β-Ga 2 O 3 薄膜金属-半导体-金属(MSM)光电探测器(PD)。比较这两种异质外延β-Ga 2 O 3 薄膜PD的性能,发现氧空位是造成差异的原因。GaN上β-Ga 2 O 3 PD的响应度随叉指间距的增加而增大,而蓝宝石上β-Ga 2 O 3 PD的行为则相反。提出了MSM结构的光电导模型,表明氧空位在上述观察中起着关键作用。同时,氧空位对光生空穴的捕获不仅增强了响应度,而且延迟了响应时间。该工作为异质外延β-Ga2O3薄膜PD的进一步优化奠定了基础。
摘要:循环肿瘤细胞(CTC)是从原发肿瘤脱落并在血液中循环的细胞,它们的转移和继发性肿瘤的形成与癌症相关死亡密切相关。因此,通过CTC调节肿瘤转移可以成为一种抗癌的新策略。研究表明,CTC可以反映原发肿瘤的特征,并提供有关肿瘤内异质性及其随时间演变的宝贵信息。此外,转移与CTC之间关系的揭示表明CTC调控代表了一种有前途的新型抗癌策略。最重要的是,在分子水平上,基因分析在基因靶向癌症治疗的新时代可能至关重要,并有助于个性化的抗转移肿瘤治疗。在这篇综述中,我们将重点介绍外周血中CTC的生物学意义,并讨论它们在癌症管理中的潜在临床意义。
热电子晶体管 (HET) 代表了一种令人兴奋的新型半导体技术集成器件,它有望实现超越 SiGe 双极异质晶体管限制的高频电子器件。随着对石墨烯等 2D 材料和新器件架构的探索,热电子晶体管有可能彻底改变现代电子领域的格局。这项研究重点介绍了一种新型热电子晶体管结构,其输出电流密度创下了 800 A cm − 2 的记录,电流增益高达 𝜶,采用可扩展的制造方法制造。该热电子晶体管结构包括湿转移到锗衬底的 2D 六方氮化硼和石墨烯层。这些材料的组合可实现卓越的性能,尤其是在高饱和输出电流密度方面。用于生产热电子晶体管的可扩展制造方案为大规模制造开辟了机会。热电子晶体管技术的这一突破为先进的电子应用带来了希望,可在实用且可制造的设备中提供大电流能力。
脊髓损伤 (SCI) 导致大脑与病变水平以下的身体部位之间严重脱节,这为探索身体如何影响人的精神生活提供了独特的机会。我们对 59 项关于 SCI 后高阶认知和情绪变化的研究进行了系统范围审查。结果表明,SCI 患者的流体能力(例如注意力、执行功能)和情绪调节(例如情绪反应和辨别力)受损,并且随着时间的推移逐渐恶化。虽然没有系统地探索,但与损伤直接相关(例如病变的严重程度和水平)和间接相关(例如血压、睡眠障碍、药物)的因素可能在这些缺陷中发挥作用。结果中发现的不一致可能源于所使用的各种方法和样本的异质性(即病变的完整性、自病变发生的时间间隔)。未来的研究需要专门控制方法、临床和社会文化维度,以更好地了解身体在认知中的作用。
摘要:随着全球变暖在许多地区造成的恶化影响,地理分布的数据中心对碳排放的贡献很大,因为主要的能源供应是化石燃料。考虑到这个问题,许多地理分布的数据中心正尝试使用清洁能源作为其能源供应,如燃料电池和可再生能源。然而,并不是所有的工作负载都能由单一电源供电,因为不同的工作负载表现出不同的特性。在本文中,我们提出了一个细粒度的异构电源分配模型,目标是最小化由多种能源供电的地理分布数据中心产生的总能源成本和能源缺口总和。为了实现这两个目标,我们设计了一个两阶段在线算法来利用每个能源的电力供应。在每个时间段,我们还考虑一个机会约束问题,并使用伯恩斯坦近似来解决问题。最后,基于真实世界轨迹的仿真结果表明,所提出的算法能够取得令人满意的性能。
2。HOMO和异核分子中的结构和键合,包括分子的形状(VSEPR理论)。3。酸和碱的概念,硬柔软的酸碱概念,非水溶剂。4。主要组元素及其化合物:同种异体,合成,结构和粘结,化合物的工业重要性。5。过渡元素和协调化合物:结构,键合理论,光谱和磁性,反应机制。6。内部过渡元素:光谱和磁性特性,氧化还原化学,分析应用。7。有机金属化合物:合成,键合和结构以及反应性。均质催化中的有机金属。8。笼子和金属簇。9。分析化学分离,光谱,电和热器分析方法。10。生物素有机化学:照片系统,卟啉,胆汁酶,氧运输,电子转移反应;氮固定,医学中的金属络合物。11。通过IR,Raman,NMR,EPR,Mossbauer,UV-VIS,NQR,MS,电子光谱和微观技术来表征无机化合物。12。核化学:核反应,裂变和融合,放射分析技术和激活分析。
视网膜母细胞瘤 (Rb) 是由未成熟视网膜母细胞引起的原发性神经外胚层肿瘤,占儿童所有癌症的 3%。它是儿童最常见的眼内恶性肿瘤 [1]。该疾病通常表现为累及单眼或双眼的单灶性或多灶性肿瘤 [2]。目前,Rb 有许多有效的治疗方法,包括局部治疗(激光治疗、冷冻治疗和放射治疗)、全身化疗、创新的新型药物输送方法(玻璃体内和眼内化疗)以及眼球摘除术以防止眼外扩散和转移以及随后的死亡 [3]。复发性肿瘤的治疗取决于疾病的程度、肿瘤病灶的侧面性和数量(单灶、单侧、多灶)、肿瘤的大小和位置、有无玻璃体和视网膜下种植、儿童的年龄和一般健康状况以及之前的治疗。国际眼内视网膜母细胞瘤分类和眼内视网膜母细胞瘤分类系统是全球范围内主要的眼内 Rb 分类方法 [ 4 ](表 1)。由于肿瘤内异质性、化学耐药表型以及药物输送到眼部的障碍,Rb 仍然是一个主要的公共卫生问题
本文对环境友好型抑制剂的获取及其在实践中的应用进行了研究。绿色抑制剂的来源是猪毛菜植物,研究了从该植物中提取绿色抑制剂提取物的方法。研究了所得提取物在0.5 M HCl 溶液中作为绿色抑制剂对碳钢结构的防腐作用。在确定猪毛菜植物绿色抑制剂的有效性时,在两种不同温度(298 K 和 313 K)和不同浓度(200 mg/L、400 mg/L、600 mg/L 和 1000 mg/L)下进行了实际实验。利用朗缪尔和特姆金等温线研究了绿色抑制剂在钢表面的吸附。还研究了温度和浓度对腐蚀速率的影响。采用重量法测定绿色抑制剂的有效性,发现其最大浓度为 91.86%。通过扫描电镜分析研究了该缓蚀剂在钢材表面及试验后钢样中的作用机理,结果表明,猪毛菜提取物的主要成分中含有杂原子有机化合物,是一种良好的绿色缓蚀剂。
航空航天领域与汽车或自动化等其他信息物理系统领域非常相似,需要新的方法和途径来提高性能并降低成本,同时保持安全水平和可编程性。虽然异构多核架构看起来很有前景,但除了认证问题之外,还需要复杂的工具链和编程流程来充分发挥其潜力。ARGO(WCET-异构并行系统基于模型的应用程序的感知并行化)项目正在通过提供集成工具链来应对这一挑战,该工具链实现了一种创新的整体方法,用于在基于模型的工作流程中对异构多核系统进行编程。基于模型的设计提升了系统建模水平,并通过执行这些模型来验证和确认设计决策,从而促进了仿真。作为案例研究,ARGO 工具链和工作流程将应用于基于模型的增强型近地警告系统 (EGPWS) 开发。EGPWS 是当前飞机中随时可用的系统,它利用高分辨率地形数据库、全球定位系统和其他传感器为飞行路径上的障碍物和地形提供警报和警告。在对 ARGO 项目针对异构多核架构的基于模型的开发方法进行简单介绍后,将介绍 EGPWS 和 EGPWS 系统建模。